Skip to main content
Top
Published in: Neural Computing and Applications 11/2021

18-09-2020 | Original Article

Multiscale-based multimodal image classification of brain tumor using deep learning method

Authors: R. Rajasree, C. Christopher Columbus, C. Shilaja

Published in: Neural Computing and Applications | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MRI is a broadly used imaging method to determine glioma-based tumors. During image processing, MRI provides large image information, and therefore, an accurate image processing must be carried out in clinical practices. Therefore, automatic and consistent methods are requisite for knowing the precise details of the image. The automated segmentation method inheres obstacles like inconsistency in tracing out the large spatial and structural inconsistency of brain tumors. In this work, a semantic-based U-NET-convolutional neural networks exploring a 3∗3 kernel’s size is proposed. Small kernels have an effect against overfitting in the deeper architecture and provide only a smaller number of weights in this network. Multiscale multimodal convolutional neural network (MSMCNN) with long short-term memory (LSTM)-based deep learning semantic segmentation technique is used for multimodalities of magnetic resonance images (MRI). The proposed methodology aims to identify and segregate the classes of tumors by analyzing every pixel in the image. Further, the performance of semantic segmentation is enhanced by applying a patch-wise classification technique. In this work, multiscale U-NET-based deep convolution network is used for classifying the multimodal convolutions into three different scale patches based on a pixel level. In order to identify the tumor classes, all three pathways are combined in the LSTM network. The proposed methodology is validated by a fivefold cross-validation scheme from MRI BRATS’15 dataset. The experiment outcomes show that the MSMCNN model outperforms the CNN-based models over the Dice coefficient and positive predictive value and obtains 0.9214 sensitivity and 0.9636 accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Whittle IR (2004) The dilemma of low grade glioma. J Neurol Neurosurg Psychiatry 75(suppl 2):31 Whittle IR (2004) The dilemma of low grade glioma. J Neurol Neurosurg Psychiatry 75(suppl 2):31
3.
go back to reference Kang E et al (2018) Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 37(6):1358–1369CrossRef Kang E et al (2018) Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 37(6):1358–1369CrossRef
4.
go back to reference Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
5.
go back to reference Fan-Hui, K (2012) Image retrieval based on Gaussian Mixture Model. In: 2012 international conference on machine learning and cybernetics Fan-Hui, K (2012) Image retrieval based on Gaussian Mixture Model. In: 2012 international conference on machine learning and cybernetics
6.
go back to reference Savitha R, Suresh S, Sundararajan N (2013) Projection-based fast learning fully complex-valued relaxation neural network. IEEE Trans Neural Netw Learn Syst 24(4):529–541CrossRef Savitha R, Suresh S, Sundararajan N (2013) Projection-based fast learning fully complex-valued relaxation neural network. IEEE Trans Neural Netw Learn Syst 24(4):529–541CrossRef
7.
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRef Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRef
8.
go back to reference Shahzadi I, Tang TB, Meriadeau F, Quyyum A (2018) CNN-LSTM: cascaded framework for brain tumour classification. In: 2018 IEEE-EMBS conference on biomedical engineering and sciences (IECBES), Dec 2018. IEEE, pp 633–637 Shahzadi I, Tang TB, Meriadeau F, Quyyum A (2018) CNN-LSTM: cascaded framework for brain tumour classification. In: 2018 IEEE-EMBS conference on biomedical engineering and sciences (IECBES), Dec 2018. IEEE, pp 633–637
9.
go back to reference Akkus Z et al (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30(4):449–459CrossRef Akkus Z et al (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30(4):449–459CrossRef
10.
go back to reference Moon WK et al (2013) Computer-aided tumor detection based on Multi-scale blob detection algorithm in automated breast ultrasound images. IEEE Trans Med Imaging 32(7):1191–1200CrossRef Moon WK et al (2013) Computer-aided tumor detection based on Multi-scale blob detection algorithm in automated breast ultrasound images. IEEE Trans Med Imaging 32(7):1191–1200CrossRef
11.
go back to reference Gonçalves VM, Delamaro ME, Nunes FdLdS (2014) A systematic review on the evaluation and characteristics of computer-aided diagnosis systems. Revista Brasileira de Engenharia Biomédica 30:355–383CrossRef Gonçalves VM, Delamaro ME, Nunes FdLdS (2014) A systematic review on the evaluation and characteristics of computer-aided diagnosis systems. Revista Brasileira de Engenharia Biomédica 30:355–383CrossRef
12.
go back to reference Brosch T et al (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239CrossRef Brosch T et al (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239CrossRef
13.
go back to reference Zaharchuk G et al (2018) Deep learning in neuroradiology. Am J Neuroradiol 39(10):1776–1784CrossRef Zaharchuk G et al (2018) Deep learning in neuroradiology. Am J Neuroradiol 39(10):1776–1784CrossRef
14.
go back to reference Pereira S et al (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251CrossRef Pereira S et al (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251CrossRef
15.
go back to reference Zhao L, Jia K (2016) Multiscale CNNs for brain tumor segmentation and diagnosis. Comput Math Methods Med 2016:7CrossRef Zhao L, Jia K (2016) Multiscale CNNs for brain tumor segmentation and diagnosis. Comput Math Methods Med 2016:7CrossRef
16.
go back to reference Soltaninejad M et al (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 12(2):183–203CrossRef Soltaninejad M et al (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 12(2):183–203CrossRef
17.
go back to reference Dong H et al (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Medical image understanding and analysis 2017. pp 506–517 Dong H et al (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Medical image understanding and analysis 2017. pp 506–517
18.
go back to reference Hu Y, Xia Y (2018) 3D Deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham Hu Y, Xia Y (2018) 3D Deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham
19.
go back to reference Wang X et al (2017) Beyond frame-level CNN: saliency-aware 3-D CNN With LSTM for video action recognition. IEEE Signal Process Lett 24(4):510–514CrossRef Wang X et al (2017) Beyond frame-level CNN: saliency-aware 3-D CNN With LSTM for video action recognition. IEEE Signal Process Lett 24(4):510–514CrossRef
20.
go back to reference Li S et al (2017) Generating image descriptions with multidirectional 2D long short-term memory. IET Comput Vision 11(1):104–111CrossRef Li S et al (2017) Generating image descriptions with multidirectional 2D long short-term memory. IET Comput Vision 11(1):104–111CrossRef
21.
go back to reference Tsironi E et al (2017) An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition. Neurocomputing 268:76–86CrossRef Tsironi E et al (2017) An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition. Neurocomputing 268:76–86CrossRef
22.
go back to reference Bauer S et al (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):0031–9155CrossRef Bauer S et al (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):0031–9155CrossRef
23.
go back to reference Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRef Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRef
Metadata
Title
Multiscale-based multimodal image classification of brain tumor using deep learning method
Authors
R. Rajasree
C. Christopher Columbus
C. Shilaja
Publication date
18-09-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05332-5

Other articles of this Issue 11/2021

Neural Computing and Applications 11/2021 Go to the issue

Premium Partner