Skip to main content
Top
Published in: Cognitive Neurodynamics 6/2023

24-11-2022 | Research Article

Multiscale information interaction at local frequency band in functional corticomuscular coupling

Authors: Shengcui Cheng, Xiaoling Chen, Yuanyuan Zhang, Ying Wang, Xin Li, Xiaoli Li, Ping Xie

Published in: Cognitive Neurodynamics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The multiscale information interaction between the cortex and the corresponding muscles is of great significance for understanding the functional corticomuscular coupling (FCMC) in the sensory-motor systems. Though the multiscale transfer entropy (MSTE) method can effectively detect the multiscale characteristics between two signals, it lacks in describing the local frequency-band characteristics. Therefore, to quantify the multiscale interaction at local-frequency bands between the cortex and the muscles, we proposed a novel method, named bivariate empirical mode decomposition—MSTE (BMSTE), by combining the bivariate empirical mode decomposition (BEMD) with MSTE. To verify this, we introduced two simulation models and then applied it to explore the FCMC by analyzing the EEG over brain scalp and surface EMG signals from the effector muscles during steady-state force output. The simulation results showed that the BMSTE method could describe the multiscale time–frequency characteristics compared with the MSTE method, and was sensitive to the coupling strength but not to the data length. The experiment results showed that the coupling at beta1 (15–25 Hz), beta2 (25–35 Hz) and gamma (35–60 Hz) bands in the descending direction was higher than that in the opposition, and at beta2 band was higher than that at beta1 band. Furthermore, there were significant differences at the low scales in beta1 band, almost all scales in beta2 band, and high scales in gamma band. These results suggest the effectiveness of the BMSTE method in describing the interaction between two signals at different time–frequency scales, and further provide a novel approach to understand the motor control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Amoud H, Snoussi H, Hewson D, Duchêne J (2008) Univariate and bivariate empirical mode decomposition for postural stability analysis. Eurasip J Adv Signal Process 2008:1–11CrossRef Amoud H, Snoussi H, Hewson D, Duchêne J (2008) Univariate and bivariate empirical mode decomposition for postural stability analysis. Eurasip J Adv Signal Process 2008:1–11CrossRef
go back to reference Arunganesh K, Sivakumaran N, Kumaravel S, Karthick P (2021) Analysis of EEG-EMG coherence in low frequency bands. Stud Health Technol Inf 281:520–521 Arunganesh K, Sivakumaran N, Kumaravel S, Karthick P (2021) Analysis of EEG-EMG coherence in low frequency bands. Stud Health Technol Inf 281:520–521
go back to reference Aydın S, Demirtaş S, Yetkin S (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neural Comput Appl 30:1085–1094CrossRef Aydın S, Demirtaş S, Yetkin S (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neural Comput Appl 30:1085–1094CrossRef
go back to reference Budini F, Mcmanus LM, Berchicci M, Menotti F, Macaluso A, Russo FD, Lowery MM, Vito GD (2014) Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor. PLoS ONE 9:1–15CrossRef Budini F, Mcmanus LM, Berchicci M, Menotti F, Macaluso A, Russo FD, Lowery MM, Vito GD (2014) Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor. PLoS ONE 9:1–15CrossRef
go back to reference Chen X, Xie P, Zhang Y, Chen Y, Yang F, Zhang L, Li X (2018) Multiscale information transfer in functional corticomuscular coupling estimation following stroke: a pilot study. Front Neurol 9:287–297PubMedPubMedCentralCrossRef Chen X, Xie P, Zhang Y, Chen Y, Yang F, Zhang L, Li X (2018) Multiscale information transfer in functional corticomuscular coupling estimation following stroke: a pilot study. Front Neurol 9:287–297PubMedPubMedCentralCrossRef
go back to reference Chen X, Zhang Y, Cheng S, Xie P (2019) Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 27:1092–1102PubMedCrossRef Chen X, Zhang Y, Cheng S, Xie P (2019) Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 27:1092–1102PubMedCrossRef
go back to reference Chen X, Zhang Y, Yang Y, Li X, Xie P (2020) Beta-range corticomuscular coupling reflects asymmetries in hand movement. IEEE Trans Neural Syst Rehabil Eng 28:2575–2585PubMedCrossRef Chen X, Zhang Y, Yang Y, Li X, Xie P (2020) Beta-range corticomuscular coupling reflects asymmetries in hand movement. IEEE Trans Neural Syst Rehabil Eng 28:2575–2585PubMedCrossRef
go back to reference Choi W, Lee JW, Huh M-H, Kang S-H (2003) An algorithm for computing the exact distribution of the Kruskal–Wallis test. Commun Stat Simul Comput 32:1029–1040CrossRef Choi W, Lee JW, Huh M-H, Kang S-H (2003) An algorithm for computing the exact distribution of the Kruskal–Wallis test. Commun Stat Simul Comput 32:1029–1040CrossRef
go back to reference Conway B, Halliday D, Farmer S, Shahani U, Maas P, Weir A, Rosenberg J (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489:917–924PubMedPubMedCentralCrossRef Conway B, Halliday D, Farmer S, Shahani U, Maas P, Weir A, Rosenberg J (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489:917–924PubMedPubMedCentralCrossRef
go back to reference Corder GW, Foreman DI (2009) Comparing more than two unrelated samples: the Kruskal–Wallis H-test. In: Nonparametric statistics for non-statisticians: a step-by-step approach, pp 99–121 Corder GW, Foreman DI (2009) Comparing more than two unrelated samples: the Kruskal–Wallis H-test. In: Nonparametric statistics for non-statisticians: a step-by-step approach, pp 99–121
go back to reference Costa M, Goldberger AL, Peng C-K (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068102-068101–068102-068104CrossRef Costa M, Goldberger AL, Peng C-K (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068102-068101–068102-068104CrossRef
go back to reference Dimigen O (2020) Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage 207:116117–116165PubMedCrossRef Dimigen O (2020) Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage 207:116117–116165PubMedCrossRef
go back to reference Dooley EE, Golaszewski NM, Bartholomew JB (2017) Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth 5:e7043CrossRef Dooley EE, Golaszewski NM, Bartholomew JB (2017) Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth 5:e7043CrossRef
go back to reference Faes L, Montalto A, Stramaglia S, Nollo G, Marinazzo D (2016) Multiscale analysis of information dynamics for linear multivariate processes. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5489–5492 Faes L, Montalto A, Stramaglia S, Nollo G, Marinazzo D (2016) Multiscale analysis of information dynamics for linear multivariate processes. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5489–5492
go back to reference Gao Y, Ren L, Zhou X, Zhang Q, Zhang Y (2018) Multichannel EEG-EMG coupling analysis using a variable scale symbolic transfer entropy approach. Chin J Biomed Eng 37:8–16 Gao Y, Ren L, Zhou X, Zhang Q, Zhang Y (2018) Multichannel EEG-EMG coupling analysis using a variable scale symbolic transfer entropy approach. Chin J Biomed Eng 37:8–16
go back to reference Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95:349–369PubMedCrossRef Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95:349–369PubMedCrossRef
go back to reference Guo Z, McClelland VM, Simeone O, Mills KR, Cvetkovic Z (2021) Multiscale wavelet transfer entropy with application to corticomuscular coupling analysis. IEEE Trans Biomed Eng 69:771–782CrossRef Guo Z, McClelland VM, Simeone O, Mills KR, Cvetkovic Z (2021) Multiscale wavelet transfer entropy with application to corticomuscular coupling analysis. IEEE Trans Biomed Eng 69:771–782CrossRef
go back to reference Hadoush H, Alafeef M, Abdulhay E (2019) Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG. Brain Topogr 32:914–921PubMedCrossRef Hadoush H, Alafeef M, Abdulhay E (2019) Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG. Brain Topogr 32:914–921PubMedCrossRef
go back to reference Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8PubMedCrossRef Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8PubMedCrossRef
go back to reference Hu M, Liang H (2017) Multiscale entropy: recent advances. In: Complexity and nonlinearity in cardiovascular signals, pp 115–138 Hu M, Liang H (2017) Multiscale entropy: recent advances. In: Complexity and nonlinearity in cardiovascular signals, pp 115–138
go back to reference Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond Ser A Math Phys Eng Sci 454:903–995CrossRef Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond Ser A Math Phys Eng Sci 454:903–995CrossRef
go back to reference Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan IA, Abbas A, Majid A, Kazmi SZH (2017) Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 28:7104–7111 Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan IA, Abbas A, Majid A, Kazmi SZH (2017) Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 28:7104–7111
go back to reference Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473PubMedCrossRef Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473PubMedCrossRef
go back to reference Kandel E (1995) Essentials of neural science and behavior. Appleton Lange Norwalk CT 6:425–451 Kandel E (1995) Essentials of neural science and behavior. Appleton Lange Norwalk CT 6:425–451
go back to reference Kayama Y (1985) Ascending, descending and local control of neuronal activity in the rat lateral geniculate nucleus. Vis Res 25:339–347PubMedCrossRef Kayama Y (1985) Ascending, descending and local control of neuronal activity in the rat lateral geniculate nucleus. Vis Res 25:339–347PubMedCrossRef
go back to reference Kılıç B, Aydın S (2022) Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures. Neuroinformatics 1–15 Kılıç B, Aydın S (2022) Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures. Neuroinformatics 1–15
go back to reference Kumar JS, Bhuvaneswari P (2012) Analysis of electroencephalography (EEG) signals and its categorization—a study. Proc Eng 38:2525–2536CrossRef Kumar JS, Bhuvaneswari P (2012) Analysis of electroencephalography (EEG) signals and its categorization—a study. Proc Eng 38:2525–2536CrossRef
go back to reference Li D, Li X, Liang Z, Voss LJ, Sleigh JW (2010) Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng 7:046010–046014PubMedCrossRef Li D, Li X, Liang Z, Voss LJ, Sleigh JW (2010) Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng 7:046010–046014PubMedCrossRef
go back to reference Li K, Hogrel J-Y, Duchêne J, Hewson DJ (2012) Analysis of fatigue and tremor during sustained maximal grip contractions using Hilbert–Huang transformation. Med Eng Phys 34:832–840PubMedCrossRef Li K, Hogrel J-Y, Duchêne J, Hewson DJ (2012) Analysis of fatigue and tremor during sustained maximal grip contractions using Hilbert–Huang transformation. Med Eng Phys 34:832–840PubMedCrossRef
go back to reference Liang Z, Cheng L, Shao S, Jin X, Yu T, Sleigh JW, Li X (2020) Information integration and mesoscopic cortical connectivity during propofol anesthesia. Anesthesiology 132:504–524PubMedCrossRef Liang Z, Cheng L, Shao S, Jin X, Yu T, Sleigh JW, Li X (2020) Information integration and mesoscopic cortical connectivity during propofol anesthesia. Anesthesiology 132:504–524PubMedCrossRef
go back to reference Liu J, Tan G, Sheng Y, Liu H (2020) Multiscale transfer spectral entropy for quantifying corticomuscular interaction. IEEE J Biomed Health Inform 25:2281–2292CrossRef Liu J, Tan G, Sheng Y, Liu H (2020) Multiscale transfer spectral entropy for quantifying corticomuscular interaction. IEEE J Biomed Health Inform 25:2281–2292CrossRef
go back to reference Liu J, Wang J, Tan G, Sheng Y, Chang H, Xie Q, Liu H (2021) Correlation evaluation of functional corticomuscular coupling with abnormal muscle synergy after stroke. IEEE Trans Biomed Eng 68:3261–3272PubMedCrossRef Liu J, Wang J, Tan G, Sheng Y, Chang H, Xie Q, Liu H (2021) Correlation evaluation of functional corticomuscular coupling with abnormal muscle synergy after stroke. IEEE Trans Biomed Eng 68:3261–3272PubMedCrossRef
go back to reference Looney D, Park C, Kidmose P, Ungstrup M, Mandic D (2009) Measuring phase synchrony using complex extensions of EMD. In: 2009 IEEE/SP 15th workshop on statistical signal processing. IEEE, pp 49–52 Looney D, Park C, Kidmose P, Ungstrup M, Mandic D (2009) Measuring phase synchrony using complex extensions of EMD. In: 2009 IEEE/SP 15th workshop on statistical signal processing. IEEE, pp 49–52
go back to reference Looney D, Mandic DP (2009) Multiscale image fusion using complex extensions of EMD. IEEE Trans Signal Process 57:1626–1630CrossRef Looney D, Mandic DP (2009) Multiscale image fusion using complex extensions of EMD. IEEE Trans Signal Process 57:1626–1630CrossRef
go back to reference Lungarella M, Pitti A, Kuniyoshi Y (2007) Information transfer at multiple scales. Phys Rev E 76:1–10CrossRef Lungarella M, Pitti A, Kuniyoshi Y (2007) Information transfer at multiple scales. Phys Rev E 76:1–10CrossRef
go back to reference Mehrkanoon S, Breakspear M, Boonstra TW (2014) The reorganization of corticomuscular coherence during a transition between sensorimotor states. Neuroimage 100:692–702PubMedCrossRef Mehrkanoon S, Breakspear M, Boonstra TW (2014) The reorganization of corticomuscular coherence during a transition between sensorimotor states. Neuroimage 100:692–702PubMedCrossRef
go back to reference Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111:326–337PubMedCrossRef Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111:326–337PubMedCrossRef
go back to reference Mima T, Matsuoka T, Hallett M (2001) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112:122–126PubMedCrossRef Mima T, Matsuoka T, Hallett M (2001) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112:122–126PubMedCrossRef
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
go back to reference Pal S, Mitra M (2012) Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 42:83–92PubMedCrossRef Pal S, Mitra M (2012) Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 42:83–92PubMedCrossRef
go back to reference Park C, Looney D, Kidmose P, Ungstrup M, Mandic DP (2011) Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 19:366–373PubMedCrossRef Park C, Looney D, Kidmose P, Ungstrup M, Mandic DP (2011) Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 19:366–373PubMedCrossRef
go back to reference Ping X, Yang F, Chen X, Du Y, Wu X (2015) Functional coupling analyses of electroencephalogram and electromyogram based on multiscale transfer entropy. Acta Physica Sinica 64:1–10 Ping X, Yang F, Chen X, Du Y, Wu X (2015) Functional coupling analyses of electroencephalogram and electromyogram based on multiscale transfer entropy. Acta Physica Sinica 64:1–10
go back to reference Ping X, Yang F, Chen X, Wu X (2017) EEG-EMG synchronization analysis based on gabor wavelet transform-granger causality. Chin J Biomed Eng 36:28–38 Ping X, Yang F, Chen X, Wu X (2017) EEG-EMG synchronization analysis based on gabor wavelet transform-granger causality. Chin J Biomed Eng 36:28–38
go back to reference Pool E-M, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76PubMedCrossRef Pool E-M, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76PubMedCrossRef
go back to reference Raethjen J, Lindemann M, Dümpelmann M, Wenzelburger R, Stolze H, Pfister G, Elger CE, Timmer J, Deuschl G (2002) Corticomuscular coherence in the 6–15 Hz band: is the cortex involved in the generation of physiologic tremor? Exp Brain Res 142:32–40PubMedCrossRef Raethjen J, Lindemann M, Dümpelmann M, Wenzelburger R, Stolze H, Pfister G, Elger CE, Timmer J, Deuschl G (2002) Corticomuscular coherence in the 6–15 Hz band: is the cortex involved in the generation of physiologic tremor? Exp Brain Res 142:32–40PubMedCrossRef
go back to reference Rilling G, Flandrin P, Gonçalves P, Lilly JM (2007) Bivariate empirical mode decomposition. IEEE Signal Process Lett 14:936–939CrossRef Rilling G, Flandrin P, Gonçalves P, Lilly JM (2007) Bivariate empirical mode decomposition. IEEE Signal Process Lett 14:936–939CrossRef
go back to reference Salankar N, Mishra P, Garg L (2021) Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed Signal Process Control 65:1–13CrossRef Salankar N, Mishra P, Garg L (2021) Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed Signal Process Control 65:1–13CrossRef
go back to reference Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142:346–382CrossRef Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142:346–382CrossRef
go back to reference Surendran A, Jacob JE, Gopakumar K (2020) Analysis of EEG using variational mode decomposition method for diagnosis of epilepsy. In: AIP conference proceedings. AIP Publishing LLC, pp 1–6 Surendran A, Jacob JE, Gopakumar K (2020) Analysis of EEG using variational mode decomposition method for diagnosis of epilepsy. In: AIP conference proceedings. AIP Publishing LLC, pp 1–6
go back to reference Tavakoli Najafabadi M, Abootalebi V, Shayegh F (2016) A new hybrid method for EOG artifact rejection from EEG signal using CCA and RLS. Iran J Biomed Eng 10:1–10 Tavakoli Najafabadi M, Abootalebi V, Shayegh F (2016) A new hybrid method for EOG artifact rejection from EEG signal using CCA and RLS. Iran J Biomed Eng 10:1–10
go back to reference Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRef Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRef
go back to reference Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:45–67PubMedCrossRef Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:45–67PubMedCrossRef
go back to reference Wang D, Shuai W, Luo H, Yue C, Grunder O (2017) A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci Total Environ 580:719–733PubMedCrossRef Wang D, Shuai W, Luo H, Yue C, Grunder O (2017) A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci Total Environ 580:719–733PubMedCrossRef
go back to reference Xie P, Cheng S, Zhang Y, Liu Z, Liu H, Chen X, Li X (2019) Direct interaction on specific frequency bands in functional corticomuscular coupling. IEEE Trans Biomed Eng 67:762–772PubMedCrossRef Xie P, Cheng S, Zhang Y, Liu Z, Liu H, Chen X, Li X (2019) Direct interaction on specific frequency bands in functional corticomuscular coupling. IEEE Trans Biomed Eng 67:762–772PubMedCrossRef
go back to reference Xie P, Pang X, Cheng S, Zhang Y, Yang Y, Li X, Chen X (2021) Cross-frequency and iso-frequency estimation of functional corticomuscular coupling after stroke. Cogn Neurodyn 15:439–451PubMedCrossRef Xie P, Pang X, Cheng S, Zhang Y, Yang Y, Li X, Chen X (2021) Cross-frequency and iso-frequency estimation of functional corticomuscular coupling after stroke. Cogn Neurodyn 15:439–451PubMedCrossRef
go back to reference Zhao X, Sun Y, Li X, Shang P (2018) Multiscale transfer entropy: measuring information transfer on multiple time scales. Commun Nonlinear Sci Numer Simul 62:202–212CrossRef Zhao X, Sun Y, Li X, Shang P (2018) Multiscale transfer entropy: measuring information transfer on multiple time scales. Commun Nonlinear Sci Numer Simul 62:202–212CrossRef
Metadata
Title
Multiscale information interaction at local frequency band in functional corticomuscular coupling
Authors
Shengcui Cheng
Xiaoling Chen
Yuanyuan Zhang
Ying Wang
Xin Li
Xiaoli Li
Ping Xie
Publication date
24-11-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 6/2023
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09895-y

Other articles of this Issue 6/2023

Cognitive Neurodynamics 6/2023 Go to the issue