Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 3/2020

01-05-2020

Multiscale Simulation of Gas Cleaning Processes

Authors: S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, N. I. Tarasov

Published in: Mathematical Models and Computer Simulations | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper considers modeling the processes of cleaning air from finely dispersed solid contaminants clustered in the form of nanoparticles. The purification technology chosen for the study involves the use of a system consisting of nanofilters and sorbents. Both cleaning methods used in it are currently in high demand and are often combined in appropriate devices. The first cleaning method using nanofilters ensures a high purification quality. However, this method is expensive as it requires frequent replacement of the filter elements (membranes) and the disposal of these elements. The second method of cleaning with sorbents gives a relatively low quality of cleaning but enables multiply repeated a purification procedure after washing the sorbent with special liquids. The optimization of air cleaning devices using nanofilters and sorbents requires a detailed investigation of the processes occurring in the cleaning system. The proposed study addresses part of the problem associated with the passage of an air flow containing solid contaminant nanoparticles through a layer of granular sorbent. For this purpose, a multiscale mathematical model, a numerical algorithm, and a parallel implementation of the model on a macroscopic scale have been developed. The novelty of the approach consists in the use of a quasigasdynamic model for describing the flow in the absorbing layer and in the proposed multiscale formulation of the problem. The preliminary calculations based on the macromodel showed the efficiency of the proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. N. Lystsov and N. V. Murzin, Nanotechnology Security Issues (MIFI, Moscow, 2007) [in Russian]. V. N. Lystsov and N. V. Murzin, Nanotechnology Security Issues (MIFI, Moscow, 2007) [in Russian].
2.
go back to reference G. E. Krichevskii, “The dangers and risks of nanotechnology and the principles of control of nanotechnology and nanomaterials,” Nanotekhnol. Okhrana Zdorov., No. 3, 10–24 (2010). G. E. Krichevskii, “The dangers and risks of nanotechnology and the principles of control of nanotechnology and nanomaterials,” Nanotekhnol. Okhrana Zdorov., No. 3, 10–24 (2010).
3.
go back to reference Yu. N. Morgalev, T. G. Morgaleva, N. S. Khoch, and S. Yu. Morgalev, Safety Basics for Nanomaterials (Tomsk. Gos. Univ., Tomsk, 2010) [in Russian]. Yu. N. Morgalev, T. G. Morgaleva, N. S. Khoch, and S. Yu. Morgalev, Safety Basics for Nanomaterials (Tomsk. Gos. Univ., Tomsk, 2010) [in Russian].
4.
go back to reference V. V. Ryzhkin, “Prospects of development of social control institution in the field of nanotech industry in Russia,” Kreativ. Ekon. 7 (10), 52–58 (2013). V. V. Ryzhkin, “Prospects of development of social control institution in the field of nanotech industry in Russia,” Kreativ. Ekon. 7 (10), 52–58 (2013).
5.
go back to reference V. N. Uzhov and B. I. Myagkov, Industrial Gas Filter Cleaning (Khimiya, Moscow, 1970) [in Russian]. V. N. Uzhov and B. I. Myagkov, Industrial Gas Filter Cleaning (Khimiya, Moscow, 1970) [in Russian].
6.
go back to reference I. G. Pivovarov, N. G. Bugai, and V. A. Rychko, Drainage with Fiber Filters (Naukova Dumka, Kiev, 1980) [in Russian]. I. G. Pivovarov, N. G. Bugai, and V. A. Rychko, Drainage with Fiber Filters (Naukova Dumka, Kiev, 1980) [in Russian].
7.
go back to reference M. G. Mazus, M. L. Malgin, and M. L. Morgulis, Industrial Emission Filters (Mashinostroenie, Moscow, 1985) [in Russian]. M. G. Mazus, M. L. Malgin, and M. L. Morgulis, Industrial Emission Filters (Mashinostroenie, Moscow, 1985) [in Russian].
8.
go back to reference E. A. Shtokman, Purification of Air from Dust at the Enterprises of the Food Industry (Agropromizdat, Moscow, 1989) [in Russian]. E. A. Shtokman, Purification of Air from Dust at the Enterprises of the Food Industry (Agropromizdat, Moscow, 1989) [in Russian].
9.
go back to reference S. B. Stark, Gas Purifiers and Plants in the Metallurgical Industry (Metallurgiia, Moscow, 1990) [in Russian]. S. B. Stark, Gas Purifiers and Plants in the Metallurgical Industry (Metallurgiia, Moscow, 1990) [in Russian].
10.
go back to reference E. A. Shtokman, Air Cleaning (ASV, Moscow, 2007) [in Russian]. E. A. Shtokman, Air Cleaning (ASV, Moscow, 2007) [in Russian].
11.
go back to reference N. F. Gladyshev, T. V. Gladysheva, and S. I. Dvoretskii, Systems and Means of Regeneration and Purification of Air of Inhabited Pressurized Objects (Spektr, Moscow, 2016) [in Russian]. N. F. Gladyshev, T. V. Gladysheva, and S. I. Dvoretskii, Systems and Means of Regeneration and Purification of Air of Inhabited Pressurized Objects (Spektr, Moscow, 2016) [in Russian].
12.
go back to reference V. S. Soldatov, A. A. Shunkevich, and V. V. Martsinkevich, “Comparative study of water softening with granular and fibrous ion exchangers,” Russ. J. Appl. Chem. 74, 1521–1524 (2001).CrossRef V. S. Soldatov, A. A. Shunkevich, and V. V. Martsinkevich, “Comparative study of water softening with granular and fibrous ion exchangers,” Russ. J. Appl. Chem. 74, 1521–1524 (2001).CrossRef
13.
go back to reference E. A. Zakharchenko, O. B. Mokhodoeva, and G. V. Myasoedova, “The use of fibrous 'filled' sorbents for the dynamic concentration of precious metals,” Sorbtsion. Khromatogr. Protses. 5, 679–689 (2005). E. A. Zakharchenko, O. B. Mokhodoeva, and G. V. Myasoedova, “The use of fibrous 'filled' sorbents for the dynamic concentration of precious metals,” Sorbtsion. Khromatogr. Protses. 5, 679–689 (2005).
14.
go back to reference I. V. Komarova, N. K. Galkina, and K. I. Sheptovetskaia, “Studies of a fibrous sorbent filled with KU-2 cation exchanger using mathematical models of the process of water softening,” Sorbtsion. Khromatogr. Protses. 10, 371–377 (2010). I. V. Komarova, N. K. Galkina, and K. I. Sheptovetskaia, “Studies of a fibrous sorbent filled with KU-2 cation exchanger using mathematical models of the process of water softening,” Sorbtsion. Khromatogr. Protses. 10, 371–377 (2010).
15.
go back to reference S. V. Kolotilov, A. V. Shvets, I. V. Vasilenko, N. V. Kasyan, and V. V. Pavlishchuk, “Porous magnetic sorbents based on Fe3O4 nanoparticles for the selective extraction of optically active molecules,” Nanosist., Nanomater., Nanotekhnol. 6, 1261–1271 (2008). S. V. Kolotilov, A. V. Shvets, I. V. Vasilenko, N. V. Kasyan, and V. V. Pavlishchuk, “Porous magnetic sorbents based on Fe3O4 nanoparticles for the selective extraction of optically active molecules,” Nanosist., Nanomater., Nanotekhnol. 6, 1261–1271 (2008).
16.
go back to reference D. A. Sukhareva, A. G. Ganieva, V. Yu. Guskov, and F. Kh. Kudasheva, “Sorption properties of a porous polymer modified with platinum nanoparticles,” Sorbtsion. Khromatogr. Protses. 14 (1), 175–180 (2014). D. A. Sukhareva, A. G. Ganieva, V. Yu. Guskov, and F. Kh. Kudasheva, “Sorption properties of a porous polymer modified with platinum nanoparticles,” Sorbtsion. Khromatogr. Protses. 14 (1), 175–180 (2014).
17.
go back to reference O. R. Egunova, T. A. Konstantinova, and S. N. Shtykov, “Magnetic magnetite nanoparticles in separation and concentration,” Izv. Sarat. Univ., Nov. Ser., Khim. Biol. Ekol. 14 (4), 27–35 (2014). O. R. Egunova, T. A. Konstantinova, and S. N. Shtykov, “Magnetic magnetite nanoparticles in separation and concentration,” Izv. Sarat. Univ., Nov. Ser., Khim. Biol. Ekol. 14 (4), 27–35 (2014).
18.
go back to reference V. V. Tolmacheva, V. V. Apyari, E. V. Kochuk, and S. G. Dmitrienko, “Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds,” J. Anal. Chem. 71, 321–338 (2016).CrossRef V. V. Tolmacheva, V. V. Apyari, E. V. Kochuk, and S. G. Dmitrienko, “Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds,” J. Anal. Chem. 71, 321–338 (2016).CrossRef
19.
go back to reference Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale simulation of nonlinear processes in technical microsystems,” Mat. Model. 27 (7), 65–74 (2015).MathSciNetMATH Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale simulation of nonlinear processes in technical microsystems,” Mat. Model. 27 (7), 65–74 (2015).MathSciNetMATH
20.
go back to reference T. Kudryashova, Yu. Karamzin, V. Podryga, and S. Polyakov, “Two-scale computation of N2-H2 jet flow based on QGD and MMD on heterogeneous multi-core hardware,” Adv. Eng. Software 120, 79–87 (2018).CrossRef T. Kudryashova, Yu. Karamzin, V. Podryga, and S. Polyakov, “Two-scale computation of N2-H2 jet flow based on QGD and MMD on heterogeneous multi-core hardware,” Adv. Eng. Software 120, 79–87 (2018).CrossRef
21.
go back to reference V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, and S. V. Polyakov, “Multiscale simulation of three-dimensional unsteady gas flows in microchannels of technical systems,” in Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), June2016, Vol. 2, pp. 2331–2345. V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, and S. V. Polyakov, “Multiscale simulation of three-dimensional unsteady gas flows in microchannels of technical systems,” in Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), June2016, Vol. 2, pp. 2331–2345.
22.
go back to reference V. O. Podryga, “Multiscale approach to computation of three-dimensional gas mixture flows in engineering microchannels,” Dokl. Math. 94, 458–460 (2016).MathSciNetMATHCrossRef V. O. Podryga, “Multiscale approach to computation of three-dimensional gas mixture flows in engineering microchannels,” Dokl. Math. 94, 458–460 (2016).MathSciNetMATHCrossRef
23.
go back to reference V. O. Podryga and S. V. Polyakov, “Parallel implementation of multiscale approach to the numerical study of gas microflows,” Vychisl. Metody Programmir. 17, 147–165 (2016). V. O. Podryga and S. V. Polyakov, “Parallel implementation of multiscale approach to the numerical study of gas microflows,” Vychisl. Metody Programmir. 17, 147–165 (2016).
24.
go back to reference V. O. Podryga and S. V. Polyakov, “Multiscale simulation of a gas jet in a vacuum,” KIAM Preprint No. 81 (Keldysh Inst. Appl. Math., Moscow, 2016). V. O. Podryga and S. V. Polyakov, “Multiscale simulation of a gas jet in a vacuum,” KIAM Preprint No. 81 (Keldysh Inst. Appl. Math., Moscow, 2016).
25.
go back to reference T. Kudryashova, V. Podryga, and S. Polyakov, “HPC-simulation of gasdynamic flows on macroscopic and molecular levels,” in Nonlinearity.Problems, Solutions and Applications (Nova Science, New York, 2017), Vol. 1, Chap. 26, pp. 543–556. T. Kudryashova, V. Podryga, and S. Polyakov, “HPC-simulation of gasdynamic flows on macroscopic and molecular levels,” in Nonlinearity.Problems, Solutions and Applications (Nova Science, New York, 2017), Vol. 1, Chap. 26, pp. 543–556.
26.
go back to reference L. I. Kheifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian]. L. I. Kheifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].
27.
go back to reference N. V. Churaev, Physical Chemistry of Mass Transfer Processes in Porous Bodies (Khimiia, Moscow, 1990) [in Russian]. N. V. Churaev, Physical Chemistry of Mass Transfer Processes in Porous Bodies (Khimiia, Moscow, 1990) [in Russian].
28.
go back to reference P. V. Moskalev and V. V. Shitov, Mathematical Modeling of Porous Systems (Fizmatlit, Moscow, 2007) [in Russian]. P. V. Moskalev and V. V. Shitov, Mathematical Modeling of Porous Systems (Fizmatlit, Moscow, 2007) [in Russian].
29.
go back to reference A. E. Scheidegger, The Physics of Flow through Porous Media (Macmillan and Co., New York, 1960).MATH A. E. Scheidegger, The Physics of Flow through Porous Media (Macmillan and Co., New York, 1960).MATH
30.
go back to reference S. A. Reitlinger, Permeability of Polymeric Materials (Khimiya, Moscow, 1974) [in Russian]. S. A. Reitlinger, Permeability of Polymeric Materials (Khimiya, Moscow, 1974) [in Russian].
31.
go back to reference A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers: Measurement Methods (Khimiya, Moscow, 1979) [in Russian]. A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers: Measurement Methods (Khimiya, Moscow, 1979) [in Russian].
32.
go back to reference A. E. Chalykh, Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian]. A. E. Chalykh, Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian].
33.
go back to reference I. I. Vorovich and V. M. Aleksandrov, Contact Mechanics (Fizmatlit, Moscow, 2001) [in Russian]. I. I. Vorovich and V. M. Aleksandrov, Contact Mechanics (Fizmatlit, Moscow, 2001) [in Russian].
34.
go back to reference N. K. Myshkin and M. I. Petrokovets, Friction, Lubrication, Wear. Physical Foundations and Technical Applications of Tribology (Fizmatlit, Moscow, 2007) [in Russian]. N. K. Myshkin and M. I. Petrokovets, Friction, Lubrication, Wear. Physical Foundations and Technical Applications of Tribology (Fizmatlit, Moscow, 2007) [in Russian].
35.
go back to reference V. G. Zavodinskii, Computer Simulation of Nanoparticles and Nanosystems (Fizmatlit, Moscow, 2013) [in Russian]. V. G. Zavodinskii, Computer Simulation of Nanoparticles and Nanosystems (Fizmatlit, Moscow, 2013) [in Russian].
36.
go back to reference R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (IOP, Adam Hilger, Bristol, NY, 1988).MATHCrossRef R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (IOP, Adam Hilger, Bristol, NY, 1988).MATHCrossRef
37.
go back to reference M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1989).MATH M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1989).MATH
38.
go back to reference J. M. Haile, Molecular Dynamics Simulations. Elementary Methods (Wiley, New York, 1992). J. M. Haile, Molecular Dynamics Simulations. Elementary Methods (Wiley, New York, 1992).
39.
go back to reference D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 2002).MATH D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 2002).MATH
40.
go back to reference D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004).MATHCrossRef D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004).MATHCrossRef
42.
go back to reference L. Verlet, “Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).CrossRef L. Verlet, “Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).CrossRef
43.
go back to reference N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44 (247), 335–341 (1949).MATHCrossRef N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44 (247), 335–341 (1949).MATHCrossRef
44.
go back to reference I. M. Sobol, The Monte Carlo Method (Nauka, Moscow, 1968; Chicago Univ. Press, Chicago, 1974). I. M. Sobol, The Monte Carlo Method (Nauka, Moscow, 1968; Chicago Univ. Press, Chicago, 1974).
45.
go back to reference G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, Berlin, Heidelberg, 1996).MATHCrossRef G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, Berlin, Heidelberg, 1996).MATHCrossRef
46.
go back to reference O. M. Belotserkovskii and Yu. I. Khlopkov, Monte-Carlo Methods in Mechanics of Fluids and Gas (Azbuka, Moscow, 2008; World Scientific, Singapore etc., 2010). O. M. Belotserkovskii and Yu. I. Khlopkov, Monte-Carlo Methods in Mechanics of Fluids and Gas (Azbuka, Moscow, 2008; World Scientific, Singapore etc., 2010).
47.
go back to reference B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (CIMNE, Barcelona, 2008). B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (CIMNE, Barcelona, 2008).
48.
go back to reference T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Berlin, Heidelberg, New York, 2009).MATHCrossRef T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Berlin, Heidelberg, New York, 2009).MATHCrossRef
49.
go back to reference Yu. V. Sheretov, Continuous Media Dynamics with Spatio-Temporal Averaging (RKhD, Moscow, Izhevsk, 2009) [in Russian]. Yu. V. Sheretov, Continuous Media Dynamics with Spatio-Temporal Averaging (RKhD, Moscow, Izhevsk, 2009) [in Russian].
50.
go back to reference T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary gas mixtures,” Dokl. Math. 90, 719–723 (2014).MathSciNetMATHCrossRef T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary gas mixtures,” Dokl. Math. 90, 719–723 (2014).MathSciNetMATHCrossRef
51.
go back to reference A. A. Zlotnik and V. A. Gavrilin, “On the discretization of a one-dimensional quasi-hydrodynamic system of equations for a real gas,” Vestn. Mosk. Energ. Inst., No. 1, 5–14 (2016). A. A. Zlotnik and V. A. Gavrilin, “On the discretization of a one-dimensional quasi-hydrodynamic system of equations for a real gas,” Vestn. Mosk. Energ. Inst., No. 1, 5–14 (2016).
52.
go back to reference A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations,” Comput. Math. Math. Phys. 57, 706–725 (2017).MathSciNetMATHCrossRef A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations,” Comput. Math. Math. Phys. 57, 706–725 (2017).MathSciNetMATHCrossRef
53.
go back to reference V. O. Podryga and S. V. Polyakov, “Molecular dynamic simulation of thermodynamic equilibrium problem for heated nickel,” KIAM Preprint No. 41 (Keldysh Inst. Appl. Math., Moscow, 2014). V. O. Podryga and S. V. Polyakov, “Molecular dynamic simulation of thermodynamic equilibrium problem for heated nickel,” KIAM Preprint No. 41 (Keldysh Inst. Appl. Math., Moscow, 2014).
54.
go back to reference V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer molecular modeling of thermodynamic equilibrium in gas-metal microsystems,” Vychisl. Metody Programm. 16, 123–138 (2015). V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer molecular modeling of thermodynamic equilibrium in gas-metal microsystems,” Vychisl. Metody Programm. 16, 123–138 (2015).
55.
go back to reference V. O. Podryga and S. V. Polyakov, “Molecular-dynamic calculation of macroparameters of gas in the flow and at the boundary,” KIAM Preprint No. 80 (Keldysh Inst. Appl. Math., Moscow, 2016). V. O. Podryga and S. V. Polyakov, “Molecular-dynamic calculation of macroparameters of gas in the flow and at the boundary,” KIAM Preprint No. 80 (Keldysh Inst. Appl. Math., Moscow, 2016).
56.
go back to reference G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian]. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].
57.
go back to reference R. Eymard, T. R. Gallouet, and R. Herbin, “The finite volume method,” in Handbook of Numerical Analysis (North Holland, Amsterdam, 2000), Vol. 7, pp. 713–1020.MATH R. Eymard, T. R. Gallouet, and R. Herbin, “The finite volume method,” in Handbook of Numerical Analysis (North Holland, Amsterdam, 2000), Vol. 7, pp. 713–1020.MATH
58.
go back to reference R. Li, Zh. Chen, and W. Wu, Generalized Difference Methods for Differential Equations. Numerical Analysis of Finite Volume Methods (Marcel Dekker, New York, 2000).MATHCrossRef R. Li, Zh. Chen, and W. Wu, Generalized Difference Methods for Differential Equations. Numerical Analysis of Finite Volume Methods (Marcel Dekker, New York, 2000).MATHCrossRef
59.
go back to reference Yu. N. Grigoriev, V. A. Vshivkov, and M. P. Fedoruk, Numerical 'Particle-In-Cell’ Methods: Theory and Applications (SO RAN, Novosibirsk, 2004; Utrecht, Boston: VSP, 2002). Yu. N. Grigoriev, V. A. Vshivkov, and M. P. Fedoruk, Numerical 'Particle-In-Cell’ Methods: Theory and Applications (SO RAN, Novosibirsk, 2004; Utrecht, Boston: VSP, 2002).
60.
go back to reference I. V. Popov and S. V. Polyakov, “Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains,” Mat. Model. 14 (6), 25–35 (2002).MathSciNetMATH I. V. Popov and S. V. Polyakov, “Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains,” Mat. Model. 14 (6), 25–35 (2002).MathSciNetMATH
61.
go back to reference Computational Fluid Dynamics in ANSYS CFX. https://www.cadfem-cis.ru/products/ansys/fluids/cfx/. Computational Fluid Dynamics in ANSYS CFX. https://​www.​cadfem-cis.​ru/​products/​ansys/​fluids/​cfx/​.​
63.
go back to reference I. V. Popov and I. V. Fryazinov, Adaptive Artificial Viscosity Method for Numerical Solution of Gas Dynamics Equations (KRASAND, Moscow, 2015) [in Russian]. I. V. Popov and I. V. Fryazinov, Adaptive Artificial Viscosity Method for Numerical Solution of Gas Dynamics Equations (KRASAND, Moscow, 2015) [in Russian].
64.
go back to reference Yu. N. Karamzin and S. V. Polyakov, “Exponential finite-volume schemes for solving elliptic and parabolic equations of general form on irregular grids,” in Proceedings of the 8th All-Russia Conference on Mesh Methods for Boundary Value Problems and Applications (Kazan. Gos. Univ., Kazan, 2010), pp. 234–248. Yu. N. Karamzin and S. V. Polyakov, “Exponential finite-volume schemes for solving elliptic and parabolic equations of general form on irregular grids,” in Proceedings of the 8th All-Russia Conference on Mesh Methods for Boundary Value Problems and Applications (Kazan. Gos. Univ., Kazan, 2010), pp. 234–248.
65.
go back to reference A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian]. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].
66.
go back to reference A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1976) [in Russian]. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1976) [in Russian].
67.
go back to reference S. V. Polyakov, T. A. Kudryashova, A. A. Sverdlin, E. M. Kononov, and O. A. Kosolapov, “Parallel software package for simulation of continuum mechanics problems on modern multiprocessor systems,” Math. Models Comput. Simul. 3, 46–57 (2011).MATHCrossRef S. V. Polyakov, T. A. Kudryashova, A. A. Sverdlin, E. M. Kononov, and O. A. Kosolapov, “Parallel software package for simulation of continuum mechanics problems on modern multiprocessor systems,” Math. Models Comput. Simul. 3, 46–57 (2011).MATHCrossRef
68.
go back to reference Yu. Karamzin, T. Kudryashova, V. Podryga, and S. Polyakov, “Numerical simulation of the gas mixture flows using hybrid computer systems,” in Proceedings of the 9th International Conference on Engineering Computational Technology (ECT 2014) (Civil-Comp Press, Stirlingshire, UK, 2014), Paper 28. Yu. Karamzin, T. Kudryashova, V. Podryga, and S. Polyakov, “Numerical simulation of the gas mixture flows using hybrid computer systems,” in Proceedings of the 9th International Conference on Engineering Computational Technology (ECT 2014) (Civil-Comp Press, Stirlingshire, UK, 2014), Paper 28.
Metadata
Title
Multiscale Simulation of Gas Cleaning Processes
Authors
S. V. Polyakov
Yu. N. Karamzin
T. A. Kudryashova
V. O. Podryga
D. V. Puzyrkov
N. I. Tarasov
Publication date
01-05-2020
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 3/2020
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048220030151

Other articles of this Issue 3/2020

Mathematical Models and Computer Simulations 3/2020 Go to the issue

Premium Partner