Skip to main content
Top

2013 | OriginalPaper | Chapter

15. Multisensor Micro-Arrays Based on Metal Oxide Nanowires for Electronic Nose Applications

Authors : Victor V. Sysoev, Evgheni Strelcov, Andrei Kolmakov

Published in: Metal Oxide Nanomaterials for Chemical Sensors

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During the last decade, quasi-1D metal oxide nanostructures were proven to be a promising material platform to design new gas sensing elements. This chapter surveys the recent developments of the analytical devices based on multisensor arrays made of metal oxide nanowires. We briefly discuss the advantages and challenges of electronic noses and the major milestones of their development. We show that evolution of the nanowire based electronic noses follows the same trends: from fabrication of the devices based on discrete nanowires to creation of integrated systems made of nanowire mats and finally realization of a monolithic sensor array made from a single nanowire. The parameters and performance of such analytical systems is reviewed and fabrication protocols are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
in other words, to generate “electronic tongue” or biosensor matrices signal.
 
2
for instance, resistance, capacitance and potential.
 
3
The influence of surface Ni doping is discussed later in the text.
 
4
The conducting channel forms a “core” while the near-surface DR represents a “shell” in the nanostructure.
 
5
which are close to the parameters of the chip designed by Semancik group.
 
Literature
1.
go back to reference Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187CrossRef Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187CrossRef
2.
go back to reference Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218CrossRef Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218CrossRef
3.
go back to reference Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895CrossRef Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895CrossRef
4.
go back to reference Haddad R, Khan R, Takahashi YK, Mori K, Harel D et al (2008) A metric for odorant comparison. Nat Methods 5:425–429CrossRef Haddad R, Khan R, Takahashi YK, Mori K, Harel D et al (2008) A metric for odorant comparison. Nat Methods 5:425–429CrossRef
5.
go back to reference Pearce TC, Schiffman SS, Nagle HT, Gardner JW (eds) (2003) Handbook of machine olfaction: electronic nose technology. Wiley, Weinheim, p 592 Pearce TC, Schiffman SS, Nagle HT, Gardner JW (eds) (2003) Handbook of machine olfaction: electronic nose technology. Wiley, Weinheim, p 592
6.
go back to reference Turner A, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2:161–166CrossRef Turner A, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2:161–166CrossRef
7.
go back to reference Kauer JS (2002) On the scents of smell in the salamander. Nature 417:336–342CrossRef Kauer JS (2002) On the scents of smell in the salamander. Nature 417:336–342CrossRef
8.
go back to reference Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715CrossRef Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715CrossRef
9.
go back to reference Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355CrossRef Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355CrossRef
10.
go back to reference Gardner JW, Bartlett PN (1996) Performance definition and standardization of electronic noses. Sens Actuators B Chem 33:60–67CrossRef Gardner JW, Bartlett PN (1996) Performance definition and standardization of electronic noses. Sens Actuators B Chem 33:60–67CrossRef
12.
go back to reference Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B Chem 18:210–211CrossRef Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B Chem 18:210–211CrossRef
13.
go back to reference Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectr 35:22–34CrossRef Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectr 35:22–34CrossRef
14.
go back to reference Lundstrom I, Erlandsson R, Frykman U, Hedborg E, Spetz A et al (1991) Artificial ‘olfactory’ images from a chemical sensor using a light-pulse technique. Nature 352:47–50CrossRef Lundstrom I, Erlandsson R, Frykman U, Hedborg E, Spetz A et al (1991) Artificial ‘olfactory’ images from a chemical sensor using a light-pulse technique. Nature 352:47–50CrossRef
15.
go back to reference Goschnick J (2001) An electronic nose for intelligent consumer products based on a gas analytical gradient micro-array. Microelectron Eng 57–58:693–704CrossRef Goschnick J (2001) An electronic nose for intelligent consumer products based on a gas analytical gradient micro-array. Microelectron Eng 57–58:693–704CrossRef
16.
go back to reference Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N et al (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296CrossRef Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N et al (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296CrossRef
17.
go back to reference Joo S, Brown RB (2008) Chemical sensors with integrated electronics. Chem Rev 108:638–651CrossRef Joo S, Brown RB (2008) Chemical sensors with integrated electronics. Chem Rev 108:638–651CrossRef
18.
go back to reference Horner GMR, Gardner JW, Bartlett PN (1992) Odour sensors for an electronic nose. Sensors and sensory systems for and electronic nose. Kluwer Academic Publishers, Dordrecht, p 327 Horner GMR, Gardner JW, Bartlett PN (1992) Odour sensors for an electronic nose. Sensors and sensory systems for and electronic nose. Kluwer Academic Publishers, Dordrecht, p 327
19.
go back to reference Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108:563–613CrossRef Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108:563–613CrossRef
20.
go back to reference Baltes H, Barrettino D, Graf D et al (2004) Microsensor and single chip integrated microsensor system. US Patent & Trademark Office, USA Patent 2004-0075140 Baltes H, Barrettino D, Graf D et al (2004) Microsensor and single chip integrated microsensor system. US Patent & Trademark Office, USA Patent 2004-0075140
21.
go back to reference Graf M, Barrettino D, Baltes HP, Hierlemann A (2007) CMOS hotplate microsensors. Springer, Berlin, p 125 Graf M, Barrettino D, Baltes HP, Hierlemann A (2007) CMOS hotplate microsensors. Springer, Berlin, p 125
22.
go back to reference Li Y, Vancura C, Barrettino D, Graf M, Hagleitner C et al (2007) Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sens Actuators B Chem 126:431–440CrossRef Li Y, Vancura C, Barrettino D, Graf M, Hagleitner C et al (2007) Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sens Actuators B Chem 126:431–440CrossRef
23.
go back to reference Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304CrossRef Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304CrossRef
24.
go back to reference Sysoev VV, Button BK, Wepsiec K, Dmitriev S, Kolmakov A (2006) Toward the nanoscopic “electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 6:1584–1588CrossRef Sysoev VV, Button BK, Wepsiec K, Dmitriev S, Kolmakov A (2006) Toward the nanoscopic “electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 6:1584–1588CrossRef
25.
go back to reference Lundstrom I, Armgarth M, Spetz A, Winquist F (1986) Gas sensors based on catalytic metal-gate field-effect devices. Sens Actuators 10:399–421CrossRef Lundstrom I, Armgarth M, Spetz A, Winquist F (1986) Gas sensors based on catalytic metal-gate field-effect devices. Sens Actuators 10:399–421CrossRef
26.
go back to reference Dickinson TA, White J, Kauer JS, Walt DR (1996) A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382:697–700CrossRef Dickinson TA, White J, Kauer JS, Walt DR (1996) A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382:697–700CrossRef
27.
go back to reference Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal Chem 71:2192–2198CrossRef Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal Chem 71:2192–2198CrossRef
28.
go back to reference Albert KJ, Walt DR, Gill DS, Pearce TC (2001) Optical multibead arrays for simple and complex odor discrimination. Anal Chem 73:2501–2508CrossRef Albert KJ, Walt DR, Gill DS, Pearce TC (2001) Optical multibead arrays for simple and complex odor discrimination. Anal Chem 73:2501–2508CrossRef
29.
30.
go back to reference LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637 LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637
31.
go back to reference Kermani BG, Fomenko I, Kotseroglou T, Forood B, Clark L et al (2006) Decoding beads in a randomly assembled optical nose. Sens Actuators B Chem 117:282–285CrossRef Kermani BG, Fomenko I, Kotseroglou T, Forood B, Clark L et al (2006) Decoding beads in a randomly assembled optical nose. Sens Actuators B Chem 117:282–285CrossRef
32.
go back to reference Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713CrossRef Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713CrossRef
33.
go back to reference Suslick KS (2004) An optoelectronic nose: “seeing” smells by means of colorimetric sensor arrays. MRS Bull 29:720–725CrossRef Suslick KS (2004) An optoelectronic nose: “seeing” smells by means of colorimetric sensor arrays. MRS Bull 29:720–725CrossRef
34.
go back to reference Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78:3591–3600CrossRef Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78:3591–3600CrossRef
35.
go back to reference Snow A, Wohltjen H (2008) Materials, method and apparatus for detection and monitoring of chemical species. US patent 7,347,974, Bl, USA Snow A, Wohltjen H (2008) Materials, method and apparatus for detection and monitoring of chemical species. US patent 7,347,974, Bl, USA
36.
go back to reference Rapp M, Reibel J, Voigt A, Balzer M, Bülow O (2000) New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sens Actuators B Chem 65:169–172CrossRef Rapp M, Reibel J, Voigt A, Balzer M, Bülow O (2000) New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sens Actuators B Chem 65:169–172CrossRef
37.
go back to reference Barie N, Bucking M, Rapp M (2006) A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sens Actuators B Chem 114:482–488CrossRef Barie N, Bucking M, Rapp M (2006) A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sens Actuators B Chem 114:482–488CrossRef
38.
go back to reference Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK et al (2000) A cantilever array-based artificial nose. Ultramicroscopy 82:1–9CrossRef Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK et al (2000) A cantilever array-based artificial nose. Ultramicroscopy 82:1–9CrossRef
39.
go back to reference Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318CrossRef Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318CrossRef
40.
go back to reference Braun T, Ghatkesar MK, Backmann N, Grange W, Boulanger P et al (2009) Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat Nanotech 4:179–185CrossRef Braun T, Ghatkesar MK, Backmann N, Grange W, Boulanger P et al (2009) Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat Nanotech 4:179–185CrossRef
41.
go back to reference Freund MS, Lewis NS (1995) A Chemically diverse conducting polymer-based electronic nose. Proc Nat Acad Sci USA 92:2652–2656CrossRef Freund MS, Lewis NS (1995) A Chemically diverse conducting polymer-based electronic nose. Proc Nat Acad Sci USA 92:2652–2656CrossRef
42.
go back to reference Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH et al (1996) Array-based vapor sensing using chemically sensitive, carbon black polymer resistors. Chem Mater 8:2298–2312CrossRef Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH et al (1996) Array-based vapor sensing using chemically sensitive, carbon black polymer resistors. Chem Mater 8:2298–2312CrossRef
43.
go back to reference Shevade AV, Ryan MA, Homer ML, Manfreda AM, Zhou, H et al (2003) Molecular modeling of polymer composite-analyte interactions in electronic nose sensors. Sens Actuators B Chem 93:84–91 Shevade AV, Ryan MA, Homer ML, Manfreda AM, Zhou, H et al (2003) Molecular modeling of polymer composite-analyte interactions in electronic nose sensors. Sens Actuators B Chem 93:84–91
44.
go back to reference Ryan MA, Shevade AV, Zhou H, Homer ML (2004) Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull 29:714–719CrossRef Ryan MA, Shevade AV, Zhou H, Homer ML (2004) Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull 29:714–719CrossRef
45.
go back to reference Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sens Actuators B Chem 72:41–50CrossRef Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sens Actuators B Chem 72:41–50CrossRef
46.
go back to reference Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE et al (2001) Microhotplate platforms for chemical sensor research. Sens Actuators B Chem 77:579–591CrossRef Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE et al (2001) Microhotplate platforms for chemical sensor research. Sens Actuators B Chem 77:579–591CrossRef
47.
go back to reference Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD et al (2007) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B Chem 121:282–294CrossRef Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD et al (2007) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B Chem 121:282–294CrossRef
48.
go back to reference Suehle JS, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using CMOS micro-hotplates and insitu processing. IEEE Electron Device Lett 14:118–120CrossRef Suehle JS, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using CMOS micro-hotplates and insitu processing. IEEE Electron Device Lett 14:118–120CrossRef
49.
go back to reference Althainz P, Dahlke A, Frietsch-Klarhof M, Goschnick J, Ache HJ (1995) Reception tuning of gas-sensor microsystems by selective coatings. Sens Actuators B Chem 25:366–369 Althainz P, Dahlke A, Frietsch-Klarhof M, Goschnick J, Ache HJ (1995) Reception tuning of gas-sensor microsystems by selective coatings. Sens Actuators B Chem 25:366–369
50.
go back to reference Althainz P, Goschnick J (1998) Sensor for reducing or oxidizing gases. USA patent 5,783,154, USA Althainz P, Goschnick J (1998) Sensor for reducing or oxidizing gases. USA patent 5,783,154, USA
51.
go back to reference Schierbaum KD, Weimar U, Gopel W, Kowalkowski R (1991) Conductance, work function and catalytic activity of SnO2-Based gas sensors. Sens Actuators B Chem 3:205–214CrossRef Schierbaum KD, Weimar U, Gopel W, Kowalkowski R (1991) Conductance, work function and catalytic activity of SnO2-Based gas sensors. Sens Actuators B Chem 3:205–214CrossRef
52.
go back to reference Dutronc P, Lucat C, Menil F, Loesch M, Combes L (1993) A new approach to selectivity in methane sensing. Sens Actuators B Chem 15:24–31CrossRef Dutronc P, Lucat C, Menil F, Loesch M, Combes L (1993) A new approach to selectivity in methane sensing. Sens Actuators B Chem 15:24–31CrossRef
53.
go back to reference Takagi T (1996) The concept and the recent research on intelligent materials. SPIE Proceedings 2779:2–15 Takagi T (1996) The concept and the recent research on intelligent materials. SPIE Proceedings 2779:2–15
54.
go back to reference Coller G (1996) Intelligent materials and systems as a basis for innovative technologies in transportation vehicles. SPIE Proceedings 2779:16–27 Coller G (1996) Intelligent materials and systems as a basis for innovative technologies in transportation vehicles. SPIE Proceedings 2779:16–27
55.
go back to reference Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S et al (2009) RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection. Wirel Commun Mob Comput 9:1318–1330 Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S et al (2009) RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection. Wirel Commun Mob Comput 9:1318–1330
56.
go back to reference Young RC, Buttner WJ, Linnell BR, Ramesham R (2003) Electronic nose for space program applications. Sens Actuators B Chem 93:7–16 Young RC, Buttner WJ, Linnell BR, Ramesham R (2003) Electronic nose for space program applications. Sens Actuators B Chem 93:7–16
57.
go back to reference Goschnick J (2001) An electronic nose for intelligent consumer products based on a gas analytical gradient micro-array. Microelectron Eng 57(8):693–704CrossRef Goschnick J (2001) An electronic nose for intelligent consumer products based on a gas analytical gradient micro-array. Microelectron Eng 57(8):693–704CrossRef
58.
go back to reference Ampuero S, Bosset J (2003) The electronic nose applied to dairy products: a review. Sens Actuators B Chem 94:1–12CrossRef Ampuero S, Bosset J (2003) The electronic nose applied to dairy products: a review. Sens Actuators B Chem 94:1–12CrossRef
59.
go back to reference Roeck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725CrossRef Roeck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725CrossRef
60.
go back to reference Czarnic AW, DeWitt SH (1997) A practical guide to combinatorial chemistry. American Chemical Society, Washington, p 450 Czarnic AW, DeWitt SH (1997) A practical guide to combinatorial chemistry. American Chemical Society, Washington, p 450
61.
go back to reference Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev 108:770–813CrossRef Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev 108:770–813CrossRef
62.
go back to reference Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE et al (2001) Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater 13:1468–1472CrossRef Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE et al (2001) Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater 13:1468–1472CrossRef
63.
go back to reference Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937–7944CrossRef Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937–7944CrossRef
64.
go back to reference Ng HT, Li J, Smith MK, Nguyen P, Cassell A et al (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249CrossRef Ng HT, Li J, Smith MK, Nguyen P, Cassell A et al (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249CrossRef
65.
go back to reference Hong YJ, Jung HS, Yoo J, Kim Y-J, Lee C-H et al (2009) Shape-controlled nanoarchitectures using nanowalls. Adv Mater 21:222–226CrossRef Hong YJ, Jung HS, Yoo J, Kim Y-J, Lee C-H et al (2009) Shape-controlled nanoarchitectures using nanowalls. Adv Mater 21:222–226CrossRef
66.
go back to reference Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949CrossRef Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949CrossRef
67.
go back to reference Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871CrossRef Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871CrossRef
68.
go back to reference Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie-Int Ed 41:2405–2408CrossRef Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie-Int Ed 41:2405–2408CrossRef
69.
go back to reference Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000CrossRef Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000CrossRef
70.
go back to reference Wang YL, Jiang XC, Xia YN (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177CrossRef Wang YL, Jiang XC, Xia YN (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177CrossRef
71.
go back to reference Li C, Zhang DH, Liu XL, Han S, Tang T et al (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615CrossRef Li C, Zhang DH, Liu XL, Han S, Tang T et al (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615CrossRef
72.
go back to reference Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRef Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRef
73.
go back to reference Heo YW, Norton D, Tien L, Kwon Y, Kang B et al (2004) ZnO nanowire growth and devices. Mater Sci Eng R 47:1–47CrossRef Heo YW, Norton D, Tien L, Kwon Y, Kang B et al (2004) ZnO nanowire growth and devices. Mater Sci Eng R 47:1–47CrossRef
74.
go back to reference Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40CrossRef Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40CrossRef
75.
go back to reference Lu JG, Chang P, Fan Z (2006) Quasi-one-dimensional metal oxide materials–synthesis, properties and applications. Mater Sci Eng R 52:49–91CrossRef Lu JG, Chang P, Fan Z (2006) Quasi-one-dimensional metal oxide materials–synthesis, properties and applications. Mater Sci Eng R 52:49–91CrossRef
76.
go back to reference Chen P-C, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. Nanotechnol IEEE Trans 7:668–682CrossRef Chen P-C, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. Nanotechnol IEEE Trans 7:668–682CrossRef
77.
go back to reference Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39CrossRef Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39CrossRef
78.
go back to reference Kolmakov A (2008) Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors. Int J Nanotechnol 5:450–474CrossRef Kolmakov A (2008) Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors. Int J Nanotechnol 5:450–474CrossRef
79.
go back to reference Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673CrossRef Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673CrossRef
80.
go back to reference Kolmakov A, Chen XH, Moskovits M (2008) Functionalizing nanowires with catalytic nanoparticles for gas sensing application. J Nanosci Nanotechnol 8:111–121CrossRef Kolmakov A, Chen XH, Moskovits M (2008) Functionalizing nanowires with catalytic nanoparticles for gas sensing application. J Nanosci Nanotechnol 8:111–121CrossRef
81.
go back to reference McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384CrossRef McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384CrossRef
82.
go back to reference Ryu K, Zhang D, Zhou C (2008) High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Appl Phys Lett 92:093111 Ryu K, Zhang D, Zhou C (2008) High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Appl Phys Lett 92:093111
83.
go back to reference Chen PC, Ishikawa FN, Chang HK, Ryu K, Zhou C (2009) A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 20:125503-1–125503-8 Chen PC, Ishikawa FN, Chang HK, Ryu K, Zhou C (2009) A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 20:125503-1–125503-8
84.
go back to reference Baik JM, Zielke M, Kim MH, Turner KL, Wodtke AM et al (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4:3117–3122CrossRef Baik JM, Zielke M, Kim MH, Turner KL, Wodtke AM et al (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4:3117–3122CrossRef
85.
go back to reference Henrion R, Henrion G (1995) Multivariate datenanalyse: Methodik und Anwendung in der Chemie und verwandten Gebieten. Springer, Berlin Henrion R, Henrion G (1995) Multivariate datenanalyse: Methodik und Anwendung in der Chemie und verwandten Gebieten. Springer, Berlin
86.
go back to reference Jurs P, Bakken G, McClelland H (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100:2649–2678CrossRef Jurs P, Bakken G, McClelland H (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100:2649–2678CrossRef
87.
go back to reference Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE et al (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626CrossRef Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE et al (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626CrossRef
88.
go back to reference Sysoev VV, Kiselev I, Frietsch M, Goschnick J (2004) Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor micro-array. Sensors 4:37–46CrossRef Sysoev VV, Kiselev I, Frietsch M, Goschnick J (2004) Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor micro-array. Sensors 4:37–46CrossRef
89.
go back to reference Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient micro-array electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3182–3188CrossRef Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient micro-array electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3182–3188CrossRef
90.
go back to reference Dolbec R, El Khakani MA (2007) Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2 : Pt based sensors. Appl Phys Lett 90:173114-1–173114-3 Dolbec R, El Khakani MA (2007) Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2 : Pt based sensors. Appl Phys Lett 90:173114-1–173114-3
91.
go back to reference Hernandez-Ramirez F, Tarancon A, Casals O, Arbiol J, Romano-Rodriguez A et al (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B: Chem Spec Issue: 25th Anniversary Sens Actuators B Chem 121:3–17 Hernandez-Ramirez F, Tarancon A, Casals O, Arbiol J, Romano-Rodriguez A et al (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B: Chem Spec Issue: 25th Anniversary Sens Actuators B Chem 121:3–17
92.
go back to reference Kumar S, Murthy JY, Alam MA (2005) Percolating conduction in finite nanotube networks. Phys Rev Lett 95:066802CrossRef Kumar S, Murthy JY, Alam MA (2005) Percolating conduction in finite nanotube networks. Phys Rev Lett 95:066802CrossRef
93.
go back to reference Stauffer DA, Aharony A (1994) Introduction to percolation theory. CRC, London, p 192 Stauffer DA, Aharony A (1994) Introduction to percolation theory. CRC, London, p 192
94.
go back to reference Sukharev VY (1993) Percolation model of adsorption-induced response of the electrical characteristics of polycrystalline semiconductor adsorbents. J Chem Soc, Faraday Trans 89:559–572CrossRef Sukharev VY (1993) Percolation model of adsorption-induced response of the electrical characteristics of polycrystalline semiconductor adsorbents. J Chem Soc, Faraday Trans 89:559–572CrossRef
95.
go back to reference Kalinin SV, Shin J, Jesse S, Geohegan D, Baddorf AP et al (2005) Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J Appl Phys 98:004503-1–004503-8CrossRef Kalinin SV, Shin J, Jesse S, Geohegan D, Baddorf AP et al (2005) Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J Appl Phys 98:004503-1–004503-8CrossRef
96.
go back to reference Go J, Sysoev V, Kolmakov A, Pimparkar N, Alam M (2009) A novel model for (percolating) nanonet chemical sensors for micro-array-based E-nose applications. International Electron Devices Meeting, Baltimore, USA, art. 5424266:26.6.1–26.6.4 Go J, Sysoev V, Kolmakov A, Pimparkar N, Alam M (2009) A novel model for (percolating) nanonet chemical sensors for micro-array-based E-nose applications. International Electron Devices Meeting, Baltimore, USA, art. 5424266:26.6.1–26.6.4
97.
go back to reference Sysoev V, Kucherenko N, Kissin V (2004) Textured tin dioxide films for gas recognition microsystems. Tech Phys Lett 30:759–761CrossRef Sysoev V, Kucherenko N, Kissin V (2004) Textured tin dioxide films for gas recognition microsystems. Tech Phys Lett 30:759–761CrossRef
98.
go back to reference Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W et al (2009) Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem 139:699–703CrossRef Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W et al (2009) Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem 139:699–703CrossRef
99.
go back to reference Goschnick J, Hahn H, Schneider T, Shankar R (2006) Mechanism dependent detection properties of layers based on tin oxide nanoparticles prepared by chemical vapor synthesis (CVS). Proceedings of 11th International Meeting on Chemical Sensors: MP69 Goschnick J, Hahn H, Schneider T, Shankar R (2006) Mechanism dependent detection properties of layers based on tin oxide nanoparticles prepared by chemical vapor synthesis (CVS). Proceedings of 11th International Meeting on Chemical Sensors: MP69
100.
go back to reference Caldararu M, Sprinceana D, Popa V, Ionescu N (1996) Surface dynamics in tin dioxide-containing catalysts II. Competition between water and oxygen adsorption on polycrystalline tin dioxide. Sens Actuators B: Chem 30:35–41CrossRef Caldararu M, Sprinceana D, Popa V, Ionescu N (1996) Surface dynamics in tin dioxide-containing catalysts II. Competition between water and oxygen adsorption on polycrystalline tin dioxide. Sens Actuators B: Chem 30:35–41CrossRef
101.
go back to reference Weisz PB (1953) Effects of electronic charge transfer between adsorbat and solid and chemisorption and catalysis. J Chem Phys 21:1531–1538CrossRef Weisz PB (1953) Effects of electronic charge transfer between adsorbat and solid and chemisorption and catalysis. J Chem Phys 21:1531–1538CrossRef
102.
go back to reference Chaim R, Levin M, Shlayer A, Estournes C (2008) Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram 107:159–169CrossRef Chaim R, Levin M, Shlayer A, Estournes C (2008) Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram 107:159–169CrossRef
103.
go back to reference Tielmann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388 Tielmann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388
104.
go back to reference Ulrich M, Bunde A, Kohl CD (2004) Percolation and gas sensitivity in nanocrystalline metal oxide films. Appl Phys Lett 85:242–244CrossRef Ulrich M, Bunde A, Kohl CD (2004) Percolation and gas sensitivity in nanocrystalline metal oxide films. Appl Phys Lett 85:242–244CrossRef
105.
go back to reference Sysoev VV, Strelcov E, Sommer M, Bruns M, Kiselev I et al (2010) Single-nanobelt electronic nose: engineering and tests of the simplest analytical element. ACS Nano 4:4487–4494CrossRef Sysoev VV, Strelcov E, Sommer M, Bruns M, Kiselev I et al (2010) Single-nanobelt electronic nose: engineering and tests of the simplest analytical element. ACS Nano 4:4487–4494CrossRef
106.
go back to reference Sysoev V, Strelcov E, Kar S, Kolmakov A (2011) The electrical characterization of a multi-electrode odor detection sensor array based on the single SnO2 nanowire. Thin Solid Films 520:898–903CrossRef Sysoev V, Strelcov E, Kar S, Kolmakov A (2011) The electrical characterization of a multi-electrode odor detection sensor array based on the single SnO2 nanowire. Thin Solid Films 520:898–903CrossRef
107.
go back to reference Bruns M, Frietsch M, Nold E, Trouillet V, Baumann H et al (2003) Surface analytical characterization of SiO gradient membrane coatings on gas sensor micro-arrays. J Vacuum Sci Technol A: Vacuum, Surf, Films 21:1109CrossRef Bruns M, Frietsch M, Nold E, Trouillet V, Baumann H et al (2003) Surface analytical characterization of SiO gradient membrane coatings on gas sensor micro-arrays. J Vacuum Sci Technol A: Vacuum, Surf, Films 21:1109CrossRef
Metadata
Title
Multisensor Micro-Arrays Based on Metal Oxide Nanowires for Electronic Nose Applications
Authors
Victor V. Sysoev
Evgheni Strelcov
Andrei Kolmakov
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5395-6_15

Premium Partners