Skip to main content
Top

2023 | OriginalPaper | Chapter

Multivariate Analysis and Comparison of Machine Learning Algorithms: A Case Study of Cereals of America

Authors : Rashika Gupta, E. Lavanya, Nonita Sharma, Monika Mangla

Published in: Intelligent Systems and Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research work aims to analyze the nutritional value of different cereals available in the market through various machine learning models. This analysis is supplemented with the visualization of data also for enhanced understanding. This understanding enables users to devise market strategies as they are competent to evaluate quality of each product and thus its reception in the market. The works starts with statistical analysis through of the data through various plots which provides insight of the data. Further authors perform a comparative analysis of different cereals based on various parameters. This analysis helps to determine the best cereal according to our requirements. The authors have implemented machine learning models on the data to predict the vitamins of any cereal based on their nutritional value. The implementation of various models viz. Linear regression, decision tree, logistic regression, random forest, and KNN advocates the efficacy of various machine learning models to the given problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sharma, N., Yadav, S., Mangla, M., Mohanty, A., Mohanty, S.N.: Multivariate analysis of COVID-19 on stock, commodity & purchase manager indices: a global perspective (2020) Sharma, N., Yadav, S., Mangla, M., Mohanty, A., Mohanty, S.N.: Multivariate analysis of COVID-19 on stock, commodity & purchase manager indices: a global perspective (2020)
2.
go back to reference Sharma, N., et al.: Geospatial multivariate analysis of COVID-19: a global perspective. Geo J., 1–15 (2021) Sharma, N., et al.: Geospatial multivariate analysis of COVID-19: a global perspective. Geo J., 1–15 (2021)
3.
go back to reference Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: VisTrails: visualization meets data management. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 745–747 (2005) Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: VisTrails: visualization meets data management. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 745–747 (2005)
4.
go back to reference Sadiku, M., Share, A.E., Musa, S.M., Akujuobi, C.M., Perry, R.: Data visualization. Int. J. Eng. Res. Adv. Technol. (IJERAT) 2(12), 11–16 (2016) Sadiku, M., Share, A.E., Musa, S.M., Akujuobi, C.M., Perry, R.: Data visualization. Int. J. Eng. Res. Adv. Technol. (IJERAT) 2(12), 11–16 (2016)
5.
go back to reference Meyer, R.D., Cook, D.: Visualization of data. Curr. Opin. Biotechnol. 11(1), 89–96 (2000)CrossRef Meyer, R.D., Cook, D.: Visualization of data. Curr. Opin. Biotechnol. 11(1), 89–96 (2000)CrossRef
6.
go back to reference Mangla, M., Sharma, N., Mehta, V., Mohanty, S.N., Saxena, K.: Statistical analysis for air quality assessment and evaluation: a data mining approach. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 1–5. IEEE (2021) Mangla, M., Sharma, N., Mehta, V., Mohanty, S.N., Saxena, K.: Statistical analysis for air quality assessment and evaluation: a data mining approach. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 1–5. IEEE (2021)
7.
go back to reference Mangla, M., Shinde, S.K., Mehta, V., Sharma, N., Mohanty, S.N. (eds.) Handbook of Research on Machine Learning: Foundations and Applications. CRC Press (2022) Mangla, M., Shinde, S.K., Mehta, V., Sharma, N., Mohanty, S.N. (eds.) Handbook of Research on Machine Learning: Foundations and Applications. CRC Press (2022)
8.
go back to reference McKevittith, B.: Nutritional aspects of cereals. Nutr. Bull. 29(2), 111–142 (2004) McKevittith, B.: Nutritional aspects of cereals. Nutr. Bull. 29(2), 111–142 (2004)
9.
go back to reference Dewettinck, K., Van Bockstaele, F., Kühne, B., Van de Walle, D., Courtens, T.M., Gellynck, X.: Nutritional value of bread: influence of processing, food interaction and consumer perception. J. Cereal Sci. 48(2), 243–257(2008) Dewettinck, K., Van Bockstaele, F., Kühne, B., Van de Walle, D., Courtens, T.M., Gellynck, X.: Nutritional value of bread: influence of processing, food interaction and consumer perception. J. Cereal Sci. 48(2), 243–257(2008)
10.
go back to reference Farag, M.A., Xiao, J., Abdallah, H.M.: Nutritional value of barley cereal and better opportunities for its processing as a value-added food: a comprehensive review. Crit. Rev. Food Sci. Nutr. 62(4), 1092–1104 (2022)CrossRef Farag, M.A., Xiao, J., Abdallah, H.M.: Nutritional value of barley cereal and better opportunities for its processing as a value-added food: a comprehensive review. Crit. Rev. Food Sci. Nutr. 62(4), 1092–1104 (2022)CrossRef
11.
go back to reference Munck, L.: Improvement of nutritional value in cereals. Hereditas 72(1), 1–128 (1972)CrossRef Munck, L.: Improvement of nutritional value in cereals. Hereditas 72(1), 1–128 (1972)CrossRef
12.
go back to reference Deshpande, S.S., Mohapatra, D., Tripathi, M.K., Sadvatha, R.H.: Kodo milletnutritional value and utilization in Indian foods. J. Grain Process. Storage 2(2), 16–23 (2015) Deshpande, S.S., Mohapatra, D., Tripathi, M.K., Sadvatha, R.H.: Kodo milletnutritional value and utilization in Indian foods. J. Grain Process. Storage 2(2), 16–23 (2015)
13.
go back to reference Vila-Real, C., Pimenta-Martins, A., Maina, N., Gomes, A., Pinto, E.: Nutritional value of indigenous whole grain cereals millet and sorghum. Nutr. Food Sci. Int. J. 4(1) (2017) Vila-Real, C., Pimenta-Martins, A., Maina, N., Gomes, A., Pinto, E.: Nutritional value of indigenous whole grain cereals millet and sorghum. Nutr. Food Sci. Int. J. 4(1) (2017)
14.
go back to reference Sharma, N.: XGBoost. The extreme gradient boosting for mining applications. GRINVer-lag (2018) Sharma, N.: XGBoost. The extreme gradient boosting for mining applications. GRINVer-lag (2018)
15.
go back to reference Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom, P., Waibel, A.: Machine learning. Ann. Rev. Comput. Sci. 4(1), 417–433(1990) Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom, P., Waibel, A.: Machine learning. Ann. Rev. Comput. Sci. 4(1), 417–433(1990)
16.
17.
go back to reference Sharma, N., Juneja, A.: Combining random forest estimates using LSboost for stock market index prediction. In: 2017 2nd International conference for convergence in Technology (I2CT), pp. 1199–1202. IEEE (2017) Sharma, N., Juneja, A.: Combining random forest estimates using LSboost for stock market index prediction. In: 2017 2nd International conference for convergence in Technology (I2CT), pp. 1199–1202. IEEE (2017)
19.
go back to reference Oduntan, O.E., Hammed, M.: A predictive model for improving cereals crop productivity using supervised machine learning algorithm, pp. 1–11 (2018) Oduntan, O.E., Hammed, M.: A predictive model for improving cereals crop productivity using supervised machine learning algorithm, pp. 1–11 (2018)
20.
go back to reference Jensen, S.M., Akhter, M.J., Azim, S., Rasmussen, J.: The predictive power of regression models to determine grass weed infestations in cereals based on drone imagery—statistical and practical aspects. Agronomy 11(11), 2277 (2021) Jensen, S.M., Akhter, M.J., Azim, S., Rasmussen, J.: The predictive power of regression models to determine grass weed infestations in cereals based on drone imagery—statistical and practical aspects. Agronomy 11(11), 2277 (2021)
21.
go back to reference Arora, A., Gupta, P.K.: Data science and its relation to big data and machine learning. Int. Res. J. Modernization Eng. Technol. Sci. 3(5), 61–65 (2021) Arora, A., Gupta, P.K.: Data science and its relation to big data and machine learning. Int. Res. J. Modernization Eng. Technol. Sci. 3(5), 61–65 (2021)
22.
go back to reference Gupta, P.K., Rishi, R, Biswas, R.: A comparative analysis of temporal data models. Int. J. Adv. Comput. Eng. Network. 1(8), 34–38 (2013) Gupta, P.K., Rishi, R, Biswas, R.: A comparative analysis of temporal data models. Int. J. Adv. Comput. Eng. Network. 1(8), 34–38 (2013)
23.
go back to reference Gupta, P.K., Singh, J.P., Kaliraman, J.: Master data management emerging issues. Int. J. Eng. Technol. Sci. Res. 4(6), 268–272 (2017) Gupta, P.K., Singh, J.P., Kaliraman, J.: Master data management emerging issues. Int. J. Eng. Technol. Sci. Res. 4(6), 268–272 (2017)
24.
go back to reference Gupta, P.K., et al.: Deep learning architecture and algorithms. IN: Proceedings of Techbyte (A National Symposium, held at JIMS, New Delhi, India, pp. 42–47 (2019) Gupta, P.K., et al.: Deep learning architecture and algorithms. IN: Proceedings of Techbyte (A National Symposium, held at JIMS, New Delhi, India, pp. 42–47 (2019)
Metadata
Title
Multivariate Analysis and Comparison of Machine Learning Algorithms: A Case Study of Cereals of America
Authors
Rashika Gupta
E. Lavanya
Nonita Sharma
Monika Mangla
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_21

Premium Partner