Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-06-2020 | Original Article | Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

Multivariate morphological reconstruction based fuzzy clustering with a weighting multi-channel guided image filter for color image segmentation

Journal:
International Journal of Machine Learning and Cybernetics > Issue 12/2020
Authors:
Guangmei Xu, Jin Zhou, Jiwen Dong, C. L. Philip Chen, Tong Zhang, Long Chen, Shiyuan Han, Lin Wang, Yuehui Chen
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The fuzzy c-means clustering with guided image filter (GF) is a useful method for image segmentation. The single-channel GF can be efficiently applied to the gray-scale guidance image, but for the color guidance image, due to the high run-time overhead on the calculation of the inverse of the covariance matrix, it is a hard work to perform the multi-channel GF. To address this issue, we propose a novel weighting multi-channel guided image filter (WMGF) method. In this method, each channel of the color guidance image is utilized to guide the filtering for the input image independently and a novel weight is defined for each channel according to the variance of the image pixels in a local window, which greatly eliminates the mutual influence between different channels and brings about a low run-time overhead. In addition, based on the WMGF method, we present a new fuzzy c-means clustering algorithm (\(\hbox {FCM}_{\scriptscriptstyle {WMGF }}\)) for the color image segmentation, in which the WMGF is performed on the membership matrix in each iteration of the fuzzy c-means clustering. To further enhance the different noise-immunity and edge preservation, the multivariate morphological reconstruction (MMR) method is introduced into the proposed fuzzy clustering method (MMR\(\_\hbox {FCM}_{\scriptscriptstyle {WMGF }}\)) to obtain higher segmentation precision. Experiments on color images with Salt & Pepper and Gaussian noises demonstrate the superiority of the proposed methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Go to the issue