Skip to main content
Top

2024 | OriginalPaper | Chapter

Multivariate Quantiles: Geometric and Measure-Transportation-Based Contours

Authors : Marc Hallin, Dimitri Konen

Published in: Applications of Optimal Transport to Economics and Related Topics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantiles are a fundamental concept in probability and theoretical statistics and a daily tool in their applications. While the univariate concept of quantiles is quite clear and well understood, its multivariate extension is more problematic. After half a century of continued efforts and many proposals, two concepts, essentially, are emerging: the so-called (relabeled) geometric quantiles, extending the characterization of univariate quantiles as minimizers of an L\(_1\) loss function involving the check functions, and the more recent center-outward quantiles based on measure transportation ideas. These two concepts yield distinct families of quantile regions and quantile contours. Our objective here is to present a comparison of their main theoretical properties and a numerical investigation of their differences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
As we shall see, the existence and (almost everywhere) uniqueness, in dimension \(d=1\), of a monotone non-decreasing mapping (that is, the derivative, hence the gradient, of a convex function) pushing \(\textrm{U}_1\) forward to \(\mathrm P\) is a particular case of a famous and more general measure transportation result by [13].
 
2
Formally, for any compact subset \(K\subset {\mathbb R}^d\), there exist constants \(0<c^-_K\le c_K^+<\infty \) such that \(c_K^-\le \textrm{dP}/\mathrm{d\lambda }(\textbf{x})\le c_K^+\) for all \(\textbf{x}\in K\). This assumption is maintained here for clarity of exposition, but it can be relaxed: see [3, 4].
 
3
Note, however, that the collections of center-outward regions or center-outward contours alone (that is, without the mappings \(\textbf{F}^{\scriptscriptstyle \pm }_\textrm{P}\) or \(\textbf{Q}^{\scriptscriptstyle \pm }_\textrm{P}\) between \({\mathbb R}^d\) and \(\mathbb {B}_d\)) do not characterize \(\mathrm P\).
 
4
In the case of a genuine sample, N is factorized into \(N=n_Rn_S + n_0\) with \(n_0< \min (n_R, n_S)\). We refer to [9] for details on the choice of \(n_R\) and \(n_S\). Here, however, we are dealing with simulations, and can choose N such that \(n_0=0\).
 
Literature
1.
go back to reference Azzalini, A., Capitanio, A.: The Skew-Normal and Related Families. Cambridge University Press, IMS Monograph series (2014) Azzalini, A., Capitanio, A.: The Skew-Normal and Related Families. Cambridge University Press, IMS Monograph series (2014)
2.
go back to reference Chaudhuri, P.: On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91, 862–872 (1996)CrossRef Chaudhuri, P.: On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91, 862–872 (1996)CrossRef
3.
go back to reference del Barrio, E., Gonzáles-Sanz, A.: Regularity of center-outward distribution functions in non-convex domains. Adv. Nonlinear Stud. (2024, to appear) del Barrio, E., Gonzáles-Sanz, A.: Regularity of center-outward distribution functions in non-convex domains. Adv. Nonlinear Stud. (2024, to appear)
4.
go back to reference del Barrio, E., González-Sanz, A., Hallin, M.: A note on the regularity of optimal-transport-based center-outward distribution and quantile functions. J. Multivar. Anal. 180, 104671 (2020) del Barrio, E., González-Sanz, A., Hallin, M.: A note on the regularity of optimal-transport-based center-outward distribution and quantile functions. J. Multivar. Anal. 180, 104671 (2020)
5.
go back to reference Figalli, A.: On the continuity of center-outward distribution and quantile functions. Nonlinear Anal. 177, 413–21 (2018)CrossRef Figalli, A.: On the continuity of center-outward distribution and quantile functions. Nonlinear Anal. 177, 413–21 (2018)CrossRef
6.
go back to reference Girard, S., Stupfler, G.: Intriguing properties of extreme geometric quantiles. REVSTAT 15, 107–139 (2017) Girard, S., Stupfler, G.: Intriguing properties of extreme geometric quantiles. REVSTAT 15, 107–139 (2017)
7.
go back to reference Hallin, M., del Barrio, E., Cuesta-Albertos, J., Matrán, C.: Distribution and quantile functions, ranks and signs in dimension \(d\): a measure transportation approach. Ann. Stat. 49, 1139–1165 (2021)CrossRef Hallin, M., del Barrio, E., Cuesta-Albertos, J., Matrán, C.: Distribution and quantile functions, ranks and signs in dimension \(d\): a measure transportation approach. Ann. Stat. 49, 1139–1165 (2021)CrossRef
8.
go back to reference Hallin, M., Hlubinka, D., Hudecová, Š.: Efficient fully distribution-free center-outward rank tests for multiple-output regression and MANOVA. J. Am. Stat. Assoc. 118(543), 1923–1939 (2022) Hallin, M., Hlubinka, D., Hudecová, Š.: Efficient fully distribution-free center-outward rank tests for multiple-output regression and MANOVA. J. Am. Stat. Assoc. 118(543), 1923–1939 (2022)
9.
go back to reference Hallin, M., Mordant, G.: On the finite-sample performance of measure-transportation-based multivariate rank tests. In: Yi, M., Nordhausen, K. (eds.) Robust and Multivariate Statistical Methods: Festschrift in Honor of David E. Tyler, pp. 87–119. Springer (2023) Hallin, M., Mordant, G.: On the finite-sample performance of measure-transportation-based multivariate rank tests. In: Yi, M., Nordhausen, K. (eds.) Robust and Multivariate Statistical Methods: Festschrift in Honor of David E. Tyler, pp. 87–119. Springer (2023)
10.
go back to reference Koltchinski, V.: M-estimation, convexity and quantiles. Ann. Stat. 25, 435–477 (1997)CrossRef Koltchinski, V.: M-estimation, convexity and quantiles. Ann. Stat. 25, 435–477 (1997)CrossRef
11.
go back to reference Konen, D.: PDE characterization of geometric distribution functions and quantiles. Bernoulli (2024, to appear) Konen, D.: PDE characterization of geometric distribution functions and quantiles. Bernoulli (2024, to appear)
12.
go back to reference Konen, D., Paindaveine, D.: Multivariate \(\rho \)-quantiles: a spatial approach. Bernoulli 28, 1912–1934 (2022)CrossRef Konen, D., Paindaveine, D.: Multivariate \(\rho \)-quantiles: a spatial approach. Bernoulli 28, 1912–1934 (2022)CrossRef
13.
go back to reference McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)CrossRef McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)CrossRef
14.
go back to reference Mottonen, J., Oja, H., Tienari, J.: On the efficiency of multivariate spatial sign and rank tests. Ann. Stat. 25, 542–552 (1997)CrossRef Mottonen, J., Oja, H., Tienari, J.: On the efficiency of multivariate spatial sign and rank tests. Ann. Stat. 25, 542–552 (1997)CrossRef
15.
go back to reference Paindaveine, D., Virta, J.: On the behavior of extreme \(d\)-dimensional spatial quantiles under minimal assumptions. In: Daouia, A., Ruiz-Gazen, A. (eds.) Advances in Contemporary Statistics and Econometrics, pp. 243–259. Springer (2020) Paindaveine, D., Virta, J.: On the behavior of extreme \(d\)-dimensional spatial quantiles under minimal assumptions. In: Daouia, A., Ruiz-Gazen, A. (eds.) Advances in Contemporary Statistics and Econometrics, pp. 243–259. Springer (2020)
16.
go back to reference Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton Mathematical Series (1970)CrossRef Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton Mathematical Series (1970)CrossRef
Metadata
Title
Multivariate Quantiles: Geometric and Measure-Transportation-Based Contours
Authors
Marc Hallin
Dimitri Konen
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-67770-0_6