Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

22-08-2021 | Regular Paper | Issue 6/2021

Journal of Visualization 6/2021

MulUBA: multi-level visual analytics of user behaviors for improving online shopping advertising

Journal:
Journal of Visualization > Issue 6/2021
Authors:
Shangsong Liu, Di Peng, Haotian Zhu, Xiaolin Wen, Xinyi Zhang, Zhenghao Zhou, Min Zhu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The advertising revenue of online shopping platforms comes from the users who click on the advertisements and purchases the advertised goods. Therefore, to accurately advertise and increase revenue, advertising analysts engage in discovering representative groups and their behavior patterns from the data of demographic attributes, shopping behaviors, and advertising click behaviors of a large number of users. Existing methods often represent user behaviors based on single-level user profiles. However, under different community granularity and time scales, user behaviors have different characteristics. In addition, the sequential relationship between advertisement clicks and other shopping behaviors is difficult to be accurately identified by the single-level analysis methods. Therefore, we cooperate with advertising experts and propose a multi-level visual analysis method based on the K-Means algorithm, which can better understand user behaviors from multiple community granularity and multiple time scales. We design two novel visualization diagrams and improve three traditional charts that can help analysts observe user characteristics at the three levels: user groups, user subgroups, and user individuals, as well as can analyze the time-series events such as advertising clicks and product purchases of representative users from multiple time scales. Furthermore, we implement a multi-view interactive prototype system MulUBA to help analysts put targeted advertisements and increase advertising revenue. Finally, we verify the effectiveness and usability of our approach by conducting three case studies and an expert evaluation on a real-world online shopping advertising dataset.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

Journal of Visualization 6/2021 Go to the issue

Premium Partner

    Image Credits