Skip to main content
Top
Published in:

14-07-2023

Music Track Recommendation Using Deep-CNN and Mel Spectrograms

Author: Tingrong Yin

Published in: Mobile Networks and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recommender systems using IoT and deep learning play a vital part in creating an engaging experience on online music streaming platforms. However, in the musical domain, it is quite challenging to build a recommender system as some of the tracks are short. Similarly, some are listened to several times or generally consumed in sessions with other tracks. The recommendation of the next track is highly context dependent. Traditional recommendation algorithms were not able to extract deep-level features from the audio signal and effectively mine user’s preferred music. Therefore, this paper aims to propose a deep learning-based model to build a music recommendation algorithm. The algorithm first preprocesses the original data, and then generates the Mel spectrogram feature set through fast Fourier transform and Mel filter processing. After applying logarithmic operation, these spectrograms are then fed to the convolutional neural network algorithm to categorize music tracks. The inference results are used to understand the user’s preferences and recommend their favorite music tracks. Experimental research and comparison on different data sets show that the algorithm has good performance in the recommendation effect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
2.
9.
go back to reference Yu Y, Wei R, Hu K, Bu Y, Zhang X (2020) “Research on an Interpretable Real-Time Information Recommendation Model based on BAS-ICF algrithm,” in 2020 Management Science Informatization and Economic Innovation Development Conference (MSIEID), Dec. pp. 304–308. doi: https://doi.org/10.1109/MSIEID52046.2020.00063 Yu Y, Wei R, Hu K, Bu Y, Zhang X (2020) “Research on an Interpretable Real-Time Information Recommendation Model based on BAS-ICF algrithm,” in 2020 Management Science Informatization and Economic Innovation Development Conference (MSIEID), Dec. pp. 304–308. doi: https://​doi.​org/​10.​1109/​MSIEID52046.​2020.​00063
12.
go back to reference van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. in Advances in neural information Processing Systems. Curran Associates, Inc. Accessed: Apr. 26, 2023. [Online]. van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. in Advances in neural information Processing Systems. Curran Associates, Inc. Accessed: Apr. 26, 2023. [Online].
16.
go back to reference Chang S-H, Abdul A, Chen J, Liao H-Y (2018) “A personalized music recommendation system using convolutional neural networks approach,” in IEEE International Conference on Applied System Invention (ICASI), Chiba: IEEE, Apr. 2018, pp. 47–49. doi: https://doi.org/10.1109/ICASI.2018.8394293 Chang S-H, Abdul A, Chen J, Liao H-Y (2018) “A personalized music recommendation system using convolutional neural networks approach,” in IEEE International Conference on Applied System Invention (ICASI), Chiba: IEEE, Apr. 2018, pp. 47–49. doi: https://​doi.​org/​10.​1109/​ICASI.​2018.​8394293
Metadata
Title
Music Track Recommendation Using Deep-CNN and Mel Spectrograms
Author
Tingrong Yin
Publication date
14-07-2023
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 6/2023
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02170-2