Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites

Authors : Ritu Singh, Monalisha Behera, Sanjeev Kumar

Published in: Bioremediation of Industrial Waste for Environmental Safety

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As every method has its own benefits and setbacks, the integration of remediation methods could be thought of as a solution to tackle remediation problems. Integrated approaches could overcome the disadvantages of individual technologies and provide a better alternative to conventional remediation methods. Nano-bioremediation is one of such kind of methods which received a lot of attention in the past few years. It aims at reducing the contaminant concentrations to risk-based levels, alleviating the additional environmental impacts simultaneously. This method brings the benefits of both nanotechnology and bioremediation together to achieve a remediation that is more efficient, less time taking, and environment friendly than the individual processes. The present chapter provides a brief account of nanotechnology and variety of nanostructured materials reported for removing organic and inorganic contaminants from environmental matrices followed by detailed description of nano-bioremediation technique, its process, and applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adikesavan S, Nilanjana D (2016) Degradation of cefdinir by Candida Sp. SMN04 and MgO nanoparticles—An integrated (nano-bio) approach. Environ Prog Sustain Energy 35(3):706–714CrossRef Adikesavan S, Nilanjana D (2016) Degradation of cefdinir by Candida Sp. SMN04 and MgO nanoparticles—An integrated (nano-bio) approach. Environ Prog Sustain Energy 35(3):706–714CrossRef
go back to reference Ahn JY, Kim C, Kim HS, Hwang KY, Hwang I (2016) Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: a field study. Water Res 107:57–65CrossRef Ahn JY, Kim C, Kim HS, Hwang KY, Hwang I (2016) Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: a field study. Water Res 107:57–65CrossRef
go back to reference Akanyeti İ, Kraft A, Ferrari MC (2017) Hybrid polystyrene nanoparticle-ultrafiltration system for hormone removal from water. J Water Process Eng 17:102–109CrossRef Akanyeti İ, Kraft A, Ferrari MC (2017) Hybrid polystyrene nanoparticle-ultrafiltration system for hormone removal from water. J Water Process Eng 17:102–109CrossRef
go back to reference An Y, Li T, Jin Z, Dong M, Xia H, Wang X (2010) Effect of bimetallic and polymercoated Fe nanoparticles on biological denitrification. Bioresour Technol 101(2010):9825–9828CrossRef An Y, Li T, Jin Z, Dong M, Xia H, Wang X (2010) Effect of bimetallic and polymercoated Fe nanoparticles on biological denitrification. Bioresour Technol 101(2010):9825–9828CrossRef
go back to reference Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180CrossRef Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180CrossRef
go back to reference Barrocas B, Entradas TJ, Nunes CD, Monteiro OC (2017) Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Appl Catal B Environ 218:709–720CrossRef Barrocas B, Entradas TJ, Nunes CD, Monteiro OC (2017) Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Appl Catal B Environ 218:709–720CrossRef
go back to reference Benelmekki M (2015) An introduction to nanoparticles and nanotechnology. In: Designing hybrid nanoparticles. Morgan & Claypool Publishers, San RafaelCrossRef Benelmekki M (2015) An introduction to nanoparticles and nanotechnology. In: Designing hybrid nanoparticles. Morgan & Claypool Publishers, San RafaelCrossRef
go back to reference Bharagava RN, Saxena G, Chowdhary P (2017a) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15CrossRef Bharagava RN, Saxena G, Chowdhary P (2017a) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426. https://​doi.​org/​10.​1201/​9781315173351-15CrossRef
go back to reference Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2CrossRef Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22. https://​doi.​org/​10.​1201/​9781315173351-2CrossRef
go back to reference Bhunia SK, Jana NR (2014) Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6(22):20085–20092CrossRef Bhunia SK, Jana NR (2014) Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6(22):20085–20092CrossRef
go back to reference Boente C, Sierra C, Martínez-Blanco D, Menéndez-Aguado JM, Gallego JR (2018) Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements. J Hazard Mater 350:55–65CrossRef Boente C, Sierra C, Martínez-Blanco D, Menéndez-Aguado JM, Gallego JR (2018) Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements. J Hazard Mater 350:55–65CrossRef
go back to reference Bokare V, Murugesan K, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Degradation of triclosan by an integrated nano-bio redox process. Bioresour Technol 101(16):6354–6360CrossRef Bokare V, Murugesan K, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Degradation of triclosan by an integrated nano-bio redox process. Bioresour Technol 101(16):6354–6360CrossRef
go back to reference Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435:563–566CrossRef Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435:563–566CrossRef
go back to reference Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2CrossRef Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–30. https://​doi.​org/​10.​1201/​b18218-2CrossRef
go back to reference Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP (2010) Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol 44(19):7635–7640CrossRef Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP (2010) Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol 44(19):7635–7640CrossRef
go back to reference Contreras AR, Casals E, Puntes V, Komilis D, Sánchez A, Font X (2015) Use of cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II) and chromium (VI) at two different pHs in single and multi-component systems. Global NEST J 17(3):536–543CrossRef Contreras AR, Casals E, Puntes V, Komilis D, Sánchez A, Font X (2015) Use of cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II) and chromium (VI) at two different pHs in single and multi-component systems. Global NEST J 17(3):536–543CrossRef
go back to reference Czech B, Rubinowska K (2013) TiO 2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption 19(2–4):619–630CrossRef Czech B, Rubinowska K (2013) TiO 2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption 19(2–4):619–630CrossRef
go back to reference Diao MH, Yao MS (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251CrossRef Diao MH, Yao MS (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251CrossRef
go back to reference Dong H, Jiang Z, Deng J, Zhang C, Cheng Y, Hou K, Zhang L, Tang L, Zeng G (2018) Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal. Water Res 129:51–57CrossRef Dong H, Jiang Z, Deng J, Zhang C, Cheng Y, Hou K, Zhang L, Tang L, Zeng G (2018) Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal. Water Res 129:51–57CrossRef
go back to reference Elfeky SA, Mahmoud SE, Youssef AF (2017) Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J Adv Res 8(4):435–443CrossRef Elfeky SA, Mahmoud SE, Youssef AF (2017) Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J Adv Res 8(4):435–443CrossRef
go back to reference Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14CrossRef Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 369–396. https://​doi.​org/​10.​1201/​9781315173351-14CrossRef
go back to reference Guo P, Tang L, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y, Deng Y, Ma L, Tan S (2016) Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J Colloid Interface Sci 469:78–85CrossRef Guo P, Tang L, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y, Deng Y, Ma L, Tan S (2016) Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J Colloid Interface Sci 469:78–85CrossRef
go back to reference Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228CrossRef Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228CrossRef
go back to reference Han B, Zhang M, Zhao D (2017) In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: column studies. Environ Pollut 223:238–246CrossRef Han B, Zhang M, Zhao D (2017) In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: column studies. Environ Pollut 223:238–246CrossRef
go back to reference He N, Li P, Zhou Y, Fan S, Ren W (2009) Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1). Chemosphere 76(11):1491–1497CrossRef He N, Li P, Zhou Y, Fan S, Ren W (2009) Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1). Chemosphere 76(11):1491–1497CrossRef
go back to reference Hosseini SM, Amini SH, Khodabakhshi AR, Bagheripour E, Van der Bruggen B (2018) Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water. J Taiwan Inst Chem Eng 82:169–178CrossRef Hosseini SM, Amini SH, Khodabakhshi AR, Bagheripour E, Van der Bruggen B (2018) Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water. J Taiwan Inst Chem Eng 82:169–178CrossRef
go back to reference Huang Y, Fulton AN, Keller AA (2016) Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci Total Environ 571:1029–1036CrossRef Huang Y, Fulton AN, Keller AA (2016) Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci Total Environ 571:1029–1036CrossRef
go back to reference Hussain I, Li M, Zhang Y, Li Y, Huang S, Du X, Liu G, Hayat W, Anwar N (2017) Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chem Eng J 311:163–172CrossRef Hussain I, Li M, Zhang Y, Li Y, Huang S, Du X, Liu G, Hayat W, Anwar N (2017) Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chem Eng J 311:163–172CrossRef
go back to reference Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813CrossRef Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813CrossRef
go back to reference Kim YM, Murugesan K, Chang YY, Kim EJ, Chang YS (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87(2):216–224CrossRef Kim YM, Murugesan K, Chang YY, Kim EJ, Chang YS (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87(2):216–224CrossRef
go back to reference Koenig JC, Boparai HK, Lee MJ, O’Carroll DM, Barnes RJ, Manefield MJ (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112CrossRef Koenig JC, Boparai HK, Lee MJ, O’Carroll DM, Barnes RJ, Manefield MJ (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112CrossRef
go back to reference Lacina P, Dvorak V, Vodickova E, Barson P, Kalivoda J, Goold S (2015) The application of nano-sized zero-valent iron for in situ remediation of chlorinated ethylenes in groundwater: a field case study. Water Environ Res 87(4):326–333CrossRef Lacina P, Dvorak V, Vodickova E, Barson P, Kalivoda J, Goold S (2015) The application of nano-sized zero-valent iron for in situ remediation of chlorinated ethylenes in groundwater: a field case study. Water Environ Res 87(4):326–333CrossRef
go back to reference Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341CrossRef Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341CrossRef
go back to reference Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462–3467CrossRef Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462–3467CrossRef
go back to reference Li Y, Du X, Wu C, Liu X, Wang X, Xu P (2013) An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res Lett 8(1):522CrossRef Li Y, Du X, Wu C, Liu X, Wang X, Xu P (2013) An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res Lett 8(1):522CrossRef
go back to reference Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108:426–432CrossRef Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108:426–432CrossRef
go back to reference Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345CrossRef Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345CrossRef
go back to reference Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303CrossRef Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303CrossRef
go back to reference Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6(6):395–400CrossRef Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6(6):395–400CrossRef
go back to reference Němeček J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, Černík M, Filipová A, Filip J, Cajthaml T (2016) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ 563:822–834CrossRef Němeček J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, Černík M, Filipová A, Filip J, Cajthaml T (2016) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ 563:822–834CrossRef
go back to reference Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher WC, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRef Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher WC, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRef
go back to reference Oh BT, Just CL, Alvarez PJ (2001) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ Sci Technol 35(21):4341–4346CrossRef Oh BT, Just CL, Alvarez PJ (2001) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ Sci Technol 35(21):4341–4346CrossRef
go back to reference Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C (2011) Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102(22):10733–10736CrossRef Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C (2011) Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102(22):10733–10736CrossRef
go back to reference Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21CrossRef Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21CrossRef
go back to reference Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89CrossRef Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89CrossRef
go back to reference Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (aging) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRef Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (aging) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRef
go back to reference Prabhakar R, Samadder SR (2018) Low cost and easy synthesis of aluminium oxide nanoparticles for arsenite removal from groundwater: a complete batch study. J Mol Liq 250:192–201CrossRef Prabhakar R, Samadder SR (2018) Low cost and easy synthesis of aluminium oxide nanoparticles for arsenite removal from groundwater: a complete batch study. J Mol Liq 250:192–201CrossRef
go back to reference Qi FF, Cao Y, Wang M, Rong F, Xu Q (2014) Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies. Nanoscale Res Lett 9(1):353CrossRef Qi FF, Cao Y, Wang M, Rong F, Xu Q (2014) Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies. Nanoscale Res Lett 9(1):353CrossRef
go back to reference Rajendran K, Sen S (2018) Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ Nanotechnol Monit Manag 9:122–127 Rajendran K, Sen S (2018) Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ Nanotechnol Monit Manag 9:122–127
go back to reference Rajesha JB, Ramasami A, Nagaraju G, Balakrishna G (2017) Photochemical elimination of Endocrine Disrupting Chemical (EDC) by ZnO nanoparticles, synthesized by gel combustion. Water Environ Res 89(5):396–405CrossRef Rajesha JB, Ramasami A, Nagaraju G, Balakrishna G (2017) Photochemical elimination of Endocrine Disrupting Chemical (EDC) by ZnO nanoparticles, synthesized by gel combustion. Water Environ Res 89(5):396–405CrossRef
go back to reference Ramamurthy AS, Eglal MM (2014) Degradation of TCE by TEOS coated nZVI in the presence of Cu (II) for groundwater remediation. J Nanomater 2014:226CrossRef Ramamurthy AS, Eglal MM (2014) Degradation of TCE by TEOS coated nZVI in the presence of Cu (II) for groundwater remediation. J Nanomater 2014:226CrossRef
go back to reference Rashid M, Price NT, Pinilla MÁG, O'Shea KE (2017) Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res 123:353–360CrossRef Rashid M, Price NT, Pinilla MÁG, O'Shea KE (2017) Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res 123:353–360CrossRef
go back to reference Ravikumar KVG, Kumar D, Kumar G, Mrudula P, Natarajan C, Mukherjee A (2016) Enhanced Cr (VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Ind Eng Chem Res 55(20):5973–5982CrossRef Ravikumar KVG, Kumar D, Kumar G, Mrudula P, Natarajan C, Mukherjee A (2016) Enhanced Cr (VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Ind Eng Chem Res 55(20):5973–5982CrossRef
go back to reference Reddy KJ, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102CrossRef Reddy KJ, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102CrossRef
go back to reference Sakulchaicharoen N, O'Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127CrossRef Sakulchaicharoen N, O'Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127CrossRef
go back to reference Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS (2018) Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci Total Environ 612:561–581CrossRef Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS (2018) Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci Total Environ 612:561–581CrossRef
go back to reference Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10CrossRef Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 217–247. https://​doi.​org/​10.​1201/​b19243-10CrossRef
go back to reference Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3CrossRef Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56. https://​doi.​org/​10.​1201/​9781315173351-3CrossRef
go back to reference Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24 Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol. https://​doi.​org/​10.​1007/​398_​2019_​24
go back to reference Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502CrossRef Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502CrossRef
go back to reference Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(2):257–262CrossRef Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(2):257–262CrossRef
go back to reference Singh R, Misra V (2014) Application of zero-valent iron nanoparticles for environmental clean up. In: Advanced materials for agriculture, food, and environmental safety, pp 385–420 Singh R, Misra V (2014) Application of zero-valent iron nanoparticles for environmental clean up. In: Advanced materials for agriculture, food, and environmental safety, pp 385–420
go back to reference Singh R, Misra V (2016) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of nanoparticles. Springer International Publishing, Cham, pp 985–1007 Singh R, Misra V (2016) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of nanoparticles. Springer International Publishing, Cham, pp 985–1007
go back to reference Singh J, Comfort SD, Shea PJ (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J Environ Qual 27(5):1240–1245CrossRef Singh J, Comfort SD, Shea PJ (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J Environ Qual 27(5):1240–1245CrossRef
go back to reference Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258:35–41CrossRef Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258:35–41CrossRef
go back to reference Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120(1–3):47–56CrossRef Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120(1–3):47–56CrossRef
go back to reference Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRef Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRef
go back to reference Vellaichamy B, Periakaruppan P (2016) Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv 6(38):31653–31660CrossRef Vellaichamy B, Periakaruppan P (2016) Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv 6(38):31653–31660CrossRef
go back to reference Wang JS, Chiu K (2009) Destruction of pentachlorobiphenyl in soil by supercritical CO2 extraction coupled with polymer-stabilized palladium nanoparticles. Chemosphere 75(5):629–633CrossRef Wang JS, Chiu K (2009) Destruction of pentachlorobiphenyl in soil by supercritical CO2 extraction coupled with polymer-stabilized palladium nanoparticles. Chemosphere 75(5):629–633CrossRef
go back to reference Wang X, Gai Z, Yu B, Feng J, Xu C, Yuan Y, Lin Z, Xu P (2007) Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microbiol 73(20):6421–6428CrossRef Wang X, Gai Z, Yu B, Feng J, Xu C, Yuan Y, Lin Z, Xu P (2007) Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microbiol 73(20):6421–6428CrossRef
go back to reference Weathers LJ, Parkin GF, Alvarez PJ (1997) Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environ Sci Technol 31(3):880–885CrossRef Weathers LJ, Parkin GF, Alvarez PJ (1997) Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environ Sci Technol 31(3):880–885CrossRef
go back to reference Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325CrossRef Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325CrossRef
go back to reference Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8(3):1237–1259CrossRef Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8(3):1237–1259CrossRef
go back to reference Xiu ZM, Gregory KB, Lowry GV, Alvarez PJ (2010a) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651CrossRef Xiu ZM, Gregory KB, Lowry GV, Alvarez PJ (2010a) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651CrossRef
go back to reference Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJ (2010b) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146CrossRef Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJ (2010b) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146CrossRef
go back to reference Yan FF, Wu C, Cheng YY, He YR, Li WW, Yu HQ (2013) Carbon nanotubes promote Cr (VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem Eng J 77:183–189CrossRef Yan FF, Wu C, Cheng YY, He YR, Li WW, Yu HQ (2013) Carbon nanotubes promote Cr (VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem Eng J 77:183–189CrossRef
go back to reference Zelmanov G, Semiat R (2008) Iron (3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water Res 42(1–2):492–498CrossRef Zelmanov G, Semiat R (2008) Iron (3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water Res 42(1–2):492–498CrossRef
Metadata
Title
Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites
Authors
Ritu Singh
Monalisha Behera
Sanjeev Kumar
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3426-9_7