Skip to main content
Top

2020 | OriginalPaper | Chapter

34. Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Functional materials such as electro-optic or opto-electric ceramics are of fundamental as well as of technological interest in the context to energy application. Since, natural resources those include sunlight, wind, water, are available in abundance on our planet earth, ever-growing human energy requirements necessitates and demands a way to make their use for generation of renewable energy. Ceramics are excellent candidates in view of their exciting optical, mechanical, thermal, electrical, and corrosion-resistant properties. Photocatalytic material systems have fascinating ability to split water molecules under the presence of photon and electrical energy, by virtue of their suitable band energetics with respect to water redox levels. The water splitting phenomenon is important wrt hydrogen energy technology which demands energy production via renewable energy sources. Photo−/electrocatalysts which are capable of efficiently splitting water molecule with a sustainable performance are highly desirable. The physicochemical study of materials to identify best suited photocatalyst has been a topic of prime interest. The present chapter discusses nano-configured photocatalysts reported till date and compares their performance and scope with respect to their commercialization for hydrogen-producing technologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Patra KK et al (2017) Possibly scalable solar hydrogen generation with quasi-artificial leaf approach. Sci Rep 7:6515CrossRef Patra KK et al (2017) Possibly scalable solar hydrogen generation with quasi-artificial leaf approach. Sci Rep 7:6515CrossRef
2.
go back to reference Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648CrossRef Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648CrossRef
3.
go back to reference Chen X et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRef Chen X et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRef
4.
go back to reference Kamat PV et al (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110:6664–6688CrossRef Kamat PV et al (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110:6664–6688CrossRef
5.
go back to reference Kudo A et al (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRef Kudo A et al (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRef
6.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
7.
go back to reference Kment S (2017) Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769CrossRef Kment S (2017) Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769CrossRef
8.
go back to reference Zou Z (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627CrossRef Zou Z (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627CrossRef
9.
go back to reference Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41CrossRef Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41CrossRef
10.
go back to reference Cheng L et al (2018) CdS-based photocatalysts. Energy Environ Sci 11:1362–1391CrossRef Cheng L et al (2018) CdS-based photocatalysts. Energy Environ Sci 11:1362–1391CrossRef
11.
go back to reference Tian B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nature Commn 9:1397. Zhu M et al (2017) Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl Catal B Eviron 217:285–292CrossRef Tian B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nature Commn 9:1397. Zhu M et al (2017) Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl Catal B Eviron 217:285–292CrossRef
12.
go back to reference Asahi R et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRef Asahi R et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRef
13.
go back to reference Borse PH (2017) Hydrogen from water. In: Mondal/Dalai (eds) Sustainable utilization of natural resources. Taylor & Francis group, Boca Raton, CRC Press. pp 441–457 Borse PH (2017) Hydrogen from water. In: Mondal/Dalai (eds) Sustainable utilization of natural resources. Taylor & Francis group, Boca Raton, CRC Press. pp 441–457
14.
15.
go back to reference Murphy AB et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrog Energy 31:1999–2017CrossRef Murphy AB et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrog Energy 31:1999–2017CrossRef
16.
go back to reference Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C1(1):1–21 Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C1(1):1–21
17.
go back to reference Borse PH et al (2002) Synthesis and investigations of rutile phase nanoparticles of TiO2. J Mater Sci Mater Electron 13(9):553–559CrossRef Borse PH et al (2002) Synthesis and investigations of rutile phase nanoparticles of TiO2. J Mater Sci Mater Electron 13(9):553–559CrossRef
18.
go back to reference Ranade MR et al (2002) Energetics of nanocrystalline TiO2. Proc Natl Acad Sci 99(2):6476–6481CrossRef Ranade MR et al (2002) Energetics of nanocrystalline TiO2. Proc Natl Acad Sci 99(2):6476–6481CrossRef
19.
go back to reference Luttrell T et al (2014) Why is anatase a better photocatalyst than rutile? – Model studies on epitaxial TiO2 films. Sci Rep 4:4043CrossRef Luttrell T et al (2014) Why is anatase a better photocatalyst than rutile? – Model studies on epitaxial TiO2 films. Sci Rep 4:4043CrossRef
20.
go back to reference Asahi R et al (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852CrossRef Asahi R et al (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852CrossRef
21.
go back to reference Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–22429CrossRef Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–22429CrossRef
22.
go back to reference Yamaguti K et al (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans I 81:1237–1246CrossRef Yamaguti K et al (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans I 81:1237–1246CrossRef
23.
go back to reference Kudo A et al (1987) Photocatalytic activities of TiOa loaded with NiO. Chem Phys Lett 133:517–519CrossRef Kudo A et al (1987) Photocatalytic activities of TiOa loaded with NiO. Chem Phys Lett 133:517–519CrossRef
24.
go back to reference Sayama K et al (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over catalyst. J Chem Soc Faraday Trans 93:1647–1654CrossRef Sayama K et al (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over catalyst. J Chem Soc Faraday Trans 93:1647–1654CrossRef
25.
go back to reference Tabata S et al (1995) Stoichiometric photocatalytic decomposition of pure water in Pt/TiO 2 aqueous suspension system, K. Catal Lett 34:245–249CrossRef Tabata S et al (1995) Stoichiometric photocatalytic decomposition of pure water in Pt/TiO 2 aqueous suspension system, K. Catal Lett 34:245–249CrossRef
26.
go back to reference Shi J et al (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–669CrossRef Shi J et al (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–669CrossRef
27.
go back to reference Zhang J et al (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2, C. Angew Chem Int Ed 47:1766–1769CrossRef Zhang J et al (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2, C. Angew Chem Int Ed 47:1766–1769CrossRef
28.
go back to reference Duonghong D et al (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103:4685–4690CrossRef Duonghong D et al (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103:4685–4690CrossRef
29.
go back to reference Sreethawong T et al (2007) Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol–gel process with surfactant template. J Power Sources 165:861–869CrossRef Sreethawong T et al (2007) Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol–gel process with surfactant template. J Power Sources 165:861–869CrossRef
30.
go back to reference Jitputti J et al (2008) Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal Commun 9:1265–1271CrossRef Jitputti J et al (2008) Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal Commun 9:1265–1271CrossRef
31.
go back to reference Jitputti J et al (2008) Synthesis of TiO2 nanotubes and its photocatalytic activity for H2 evolution. Jpn J Appl Phys 47:751–756CrossRef Jitputti J et al (2008) Synthesis of TiO2 nanotubes and its photocatalytic activity for H2 evolution. Jpn J Appl Phys 47:751–756CrossRef
32.
go back to reference Jitputti J et al (2009) Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal Commun 10:378–382CrossRef Jitputti J et al (2009) Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal Commun 10:378–382CrossRef
33.
go back to reference Domen K et al (1980) Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, K. J Chem Soc Chem Commun 12:543–544CrossRef Domen K et al (1980) Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, K. J Chem Soc Chem Commun 12:543–544CrossRef
34.
go back to reference Zielinska B et al (2008) Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. Int J Hydrog Energy 33:1797–1180CrossRef Zielinska B et al (2008) Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. Int J Hydrog Energy 33:1797–1180CrossRef
35.
go back to reference Kajiwara T et al (1982) Dynamics of luminescence from Ru(bpy)3Cl2 adsorbed on semiconductor surfaces. J Phys Chem 86:4516–4452CrossRef Kajiwara T et al (1982) Dynamics of luminescence from Ru(bpy)3Cl2 adsorbed on semiconductor surfaces. J Phys Chem 86:4516–4452CrossRef
36.
go back to reference Yamaguti K et al (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans 1(81):1237–1246CrossRef Yamaguti K et al (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans 1(81):1237–1246CrossRef
37.
go back to reference Zhang Z et al (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrog Energy 35:8528–8535CrossRef Zhang Z et al (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrog Energy 35:8528–8535CrossRef
38.
go back to reference Konta R et al (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108(26):8992–8995CrossRef Konta R et al (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108(26):8992–8995CrossRef
39.
go back to reference Bae SW et al (2008) Dopant dependent band gap tailoring of hydrothermally prepared cubic SrTixM1-xO3 (M=Ru,Rh,Ir,Pt,Pd) nanoparticles as visible light photocatalyst. Appl Phys Lett 92(10):104107–104110CrossRef Bae SW et al (2008) Dopant dependent band gap tailoring of hydrothermally prepared cubic SrTixM1-xO3 (M=Ru,Rh,Ir,Pt,Pd) nanoparticles as visible light photocatalyst. Appl Phys Lett 92(10):104107–104110CrossRef
40.
go back to reference Iwashina K et al (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Amer Chem Soc 133(34):13272–13275CrossRef Iwashina K et al (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Amer Chem Soc 133(34):13272–13275CrossRef
41.
go back to reference Liu M et al (2011) Water photolysis with a cross-linked titanium dioxide nanowire anode. Chem Sci 2:80–87CrossRef Liu M et al (2011) Water photolysis with a cross-linked titanium dioxide nanowire anode. Chem Sci 2:80–87CrossRef
42.
go back to reference Kim J et al (2005) Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top Catal 35:295–230CrossRef Kim J et al (2005) Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top Catal 35:295–230CrossRef
43.
go back to reference Kim HG et al (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1077–107 Kim HG et al (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1077–107
44.
go back to reference Song H et al (2007) Hydrothermal synthesis of flaky crystallized La2Ti 2O7 for producing hydrogen from photocatalytic water splitting. Catal Lett 113:54–58CrossRef Song H et al (2007) Hydrothermal synthesis of flaky crystallized La2Ti 2O7 for producing hydrogen from photocatalytic water splitting. Catal Lett 113:54–58CrossRef
45.
go back to reference Ji SM et al (2007) Photocatalytic hydrogen production from natural seawater. J Photochem Photobiol 189:141–144CrossRef Ji SM et al (2007) Photocatalytic hydrogen production from natural seawater. J Photochem Photobiol 189:141–144CrossRef
46.
go back to reference Takahashi H et al (1999) Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. J Alloys Compd 285:77–78CrossRef Takahashi H et al (1999) Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. J Alloys Compd 285:77–78CrossRef
47.
go back to reference Inoue Y, et al (1990) Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water. J Chem Soc Chem Commun 1298–129 Inoue Y, et al (1990) Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water. J Chem Soc Chem Commun 1298–129
48.
go back to reference Chen X et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750CrossRef Chen X et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750CrossRef
49.
go back to reference Katal R, Salehi M, Davood Abadi Farahani MH, Masudy-Panah S, Ong SL, Hu J (2018) Preparation of a new type of black TiO2 under vacuum atmosphere for sunlight photocatalysis. ACS Appl Mater Interfaces 10(41):35316–35326ECrossRef Katal R, Salehi M, Davood Abadi Farahani MH, Masudy-Panah S, Ong SL, Hu J (2018) Preparation of a new type of black TiO2 under vacuum atmosphere for sunlight photocatalysis. ACS Appl Mater Interfaces 10(41):35316–35326ECrossRef
50.
go back to reference Jeong D, Borse PH, Jang JS, Lee JS, Cho CR, Bae JS, Park S, Jung OS, Ryu SM, Won MS, Kim HG (2009) Physical and optical properties of nanocrystalline calcium ferrite synthesized by the polymerized complex method. J Nanosci Nanotech 9:3568 Jeong D, Borse PH, Jang JS, Lee JS, Cho CR, Bae JS, Park S, Jung OS, Ryu SM, Won MS, Kim HG (2009) Physical and optical properties of nanocrystalline calcium ferrite synthesized by the polymerized complex method. J Nanosci Nanotech 9:3568
51.
go back to reference McDonald KJ et al (2011) Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater 23(21):4863–4869CrossRef McDonald KJ et al (2011) Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater 23(21):4863–4869CrossRef
52.
go back to reference Borse et al (2008) Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light. Appl Phys Lett 93:173103 Borse et al (2008) Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light. Appl Phys Lett 93:173103
53.
go back to reference Joshi UA et al (2008) Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl Phys Lett 92(24):242106–242108CrossRef Joshi UA et al (2008) Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl Phys Lett 92(24):242106–242108CrossRef
54.
go back to reference Kim HG et al (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis 5889–5891 Kim HG et al (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis 5889–5891
55.
go back to reference Jang JS et al (2009) Synthesis of zinc ferrite and its photocatalytic application under visible light. J Korean Phys Soc 54(1):204–208CrossRef Jang JS et al (2009) Synthesis of zinc ferrite and its photocatalytic application under visible light. J Korean Phys Soc 54(1):204–208CrossRef
56.
go back to reference Tahir AA et al (2010) Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J Photochem Photobio A-Chem 216:119–125CrossRef Tahir AA et al (2010) Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J Photochem Photobio A-Chem 216:119–125CrossRef
57.
go back to reference Dom R et al (2011) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2(33):12782–12791CrossRef Dom R et al (2011) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2(33):12782–12791CrossRef
58.
go back to reference Dom R et al (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Sol Stat Commun 151:470–473CrossRef Dom R et al (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Sol Stat Commun 151:470–473CrossRef
59.
go back to reference Mayer MT, Lin Y, Yuan G, Wang D (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46:1558–1566CrossRef Mayer MT, Lin Y, Yuan G, Wang D (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46:1558–1566CrossRef
60.
go back to reference Kennedy H, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709 Kennedy H, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709
61.
go back to reference Dom R et al (2013) Investigation of solar photoelectrochemical hydrogen generation ability of ferrites for energy production. Mater Sci Forum 764:97–115CrossRef Dom R et al (2013) Investigation of solar photoelectrochemical hydrogen generation ability of ferrites for energy production. Mater Sci Forum 764:97–115CrossRef
62.
go back to reference Nathan T et al (2010) Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4:1977–1986CrossRef Nathan T et al (2010) Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4:1977–1986CrossRef
63.
go back to reference Tilley SD et al (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide. Int Ed 49:6405–6408CrossRef Tilley SD et al (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide. Int Ed 49:6405–6408CrossRef
64.
go back to reference Khan SUM et al (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103:7184–7189CrossRef Khan SUM et al (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103:7184–7189CrossRef
65.
go back to reference Satsangi VR et al (2008) Nanostructured hematite for photoelectrochemical generation of hydrogen. Int J Hydrog Energy 33:312–318CrossRef Satsangi VR et al (2008) Nanostructured hematite for photoelectrochemical generation of hydrogen. Int J Hydrog Energy 33:312–318CrossRef
66.
go back to reference Chang CY et al (2012) Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production. Int J Hydrogen Energy 37:13616–13622 Chang CY et al (2012) Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production. Int J Hydrogen Energy 37:13616–13622
67.
go back to reference Souza FL et al (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol Energy Mat Sol Cells 93:362–368CrossRef Souza FL et al (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol Energy Mat Sol Cells 93:362–368CrossRef
68.
go back to reference Boris DC et al (2012) Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23:194009–194017CrossRef Boris DC et al (2012) Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23:194009–194017CrossRef
69.
go back to reference Lin Y et al (2011) Nanonet-based hematite hetero nanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401CrossRef Lin Y et al (2011) Nanonet-based hematite hetero nanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401CrossRef
70.
go back to reference Yarahmadi SS et al (2009) Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Mater Lett 63:523–526CrossRef Yarahmadi SS et al (2009) Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Mater Lett 63:523–526CrossRef
71.
go back to reference Tahir AA et al (2009) Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater 21:3763–3772CrossRef Tahir AA et al (2009) Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater 21:3763–3772CrossRef
72.
go back to reference Majumder SA et al (1994) Photo electrolysis of water at bare and electrocatalyst covered thin film iron oxide electrode. Int J Hydrog Energy 19:881–888CrossRef Majumder SA et al (1994) Photo electrolysis of water at bare and electrocatalyst covered thin film iron oxide electrode. Int J Hydrog Energy 19:881–888CrossRef
73.
go back to reference Ingler WB et al (2004) Photo response of spray pyrolytically synthesized magnesium doped iron (III) oxide (p- Fe2O3) thin films under solar simulated light illumination. Thin Sol Films 461:301–308CrossRef Ingler WB et al (2004) Photo response of spray pyrolytically synthesized magnesium doped iron (III) oxide (p- Fe2O3) thin films under solar simulated light illumination. Thin Sol Films 461:301–308CrossRef
74.
go back to reference Tamirat AG et al (2015) Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J Mat Chem A 3:5949–5961CrossRef Tamirat AG et al (2015) Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J Mat Chem A 3:5949–5961CrossRef
76.
go back to reference Kim JH et al (2015) Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv Energy Mater 5(6):1401933CrossRef Kim JH et al (2015) Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv Energy Mater 5(6):1401933CrossRef
77.
go back to reference Kim JH et al (2015) Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 7(45):19144–19151CrossRef Kim JH et al (2015) Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 7(45):19144–19151CrossRef
78.
go back to reference Guijarro N et al (2018) Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain Energy Fuels 2:103–117CrossRef Guijarro N et al (2018) Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain Energy Fuels 2:103–117CrossRef
79.
go back to reference Kim JH (2018) A multitude of modifications strategy of ZnFe2O4 nanorod photoanodes for enhanced photoelectrochemical water splitting activity. J Mater Chem A 6:12693–12700CrossRef Kim JH (2018) A multitude of modifications strategy of ZnFe2O4 nanorod photoanodes for enhanced photoelectrochemical water splitting activity. J Mater Chem A 6:12693–12700CrossRef
80.
go back to reference Zhu X (2018) Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv Mater 30:1801612CrossRef Zhu X (2018) Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv Mater 30:1801612CrossRef
81.
go back to reference Hufnagel AG (2016) Zinc ferrite photoanode nanomorphologies with favorable kinetics for water-splitting. Adv Funct Mater 26:4435–4443CrossRef Hufnagel AG (2016) Zinc ferrite photoanode nanomorphologies with favorable kinetics for water-splitting. Adv Funct Mater 26:4435–4443CrossRef
82.
go back to reference Guo Y (2017) A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J Mater Chem A 2017(5):7571–7577CrossRef Guo Y (2017) A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J Mater Chem A 2017(5):7571–7577CrossRef
83.
go back to reference Bignozzi CA et al (2013) Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 42:2228–2246CrossRef Bignozzi CA et al (2013) Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 42:2228–2246CrossRef
84.
go back to reference Hong SJ et al (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrog Energy 34:3234–3242CrossRef Hong SJ et al (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrog Energy 34:3234–3242CrossRef
85.
go back to reference Zheng JY et al (2015) Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 17(32):6070–6093CrossRef Zheng JY et al (2015) Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 17(32):6070–6093CrossRef
86.
go back to reference Arutanit O et al (2016) Tailored synthesis of macroporous Pt/WO3 photocatalyst with nanoaggregates via flame assisted spray pyrolysis. AIChE J 62(11):3864–3873CrossRef Arutanit O et al (2016) Tailored synthesis of macroporous Pt/WO3 photocatalyst with nanoaggregates via flame assisted spray pyrolysis. AIChE J 62(11):3864–3873CrossRef
87.
go back to reference Tahir MB et al (2018) WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J Inorg Organomet Polym Mater 28(3):1107–1113CrossRef Tahir MB et al (2018) WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J Inorg Organomet Polym Mater 28(3):1107–1113CrossRef
88.
go back to reference Wu K et al (2018) One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances. Appl Surf Sci 462:991–1001CrossRef Wu K et al (2018) One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances. Appl Surf Sci 462:991–1001CrossRef
89.
go back to reference Do TH et al (2016) Superior photoelectrochemical activity of self-assembled NiWO4-WO3 heteroepitaxy. Nano Energy 23:153–160CrossRef Do TH et al (2016) Superior photoelectrochemical activity of self-assembled NiWO4-WO3 heteroepitaxy. Nano Energy 23:153–160CrossRef
90.
go back to reference Priya A et al (2018) A low-cost visible light activeBiFeWO6/TiO2nanocompositewith an efficient photocatalytic and photoelectrochemical performance. Opt Mater 81:84–92. 269CrossRef Priya A et al (2018) A low-cost visible light activeBiFeWO6/TiO2nanocompositewith an efficient photocatalytic and photoelectrochemical performance. Opt Mater 81:84–92. 269CrossRef
91.
go back to reference Lopez XA et al (2016) Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni, Co, Cu and Mn) tungstates. Int J Hydrog Energy 41(48):23312–23317CrossRef Lopez XA et al (2016) Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni, Co, Cu and Mn) tungstates. Int J Hydrog Energy 41(48):23312–23317CrossRef
92.
go back to reference Hu T et al (2018) Iron-doped bismuth tungstate with an excellent photocatalytic performance. ChemCatChem 10(14):3040–3048. Nakajima T et al (2016) WO3 nanosponge photoanodes with high applied bias photon-to-current efficiency for solar hydrogen and peroxydisulfate production. J Mater Chem A 4:17809–1781CrossRef Hu T et al (2018) Iron-doped bismuth tungstate with an excellent photocatalytic performance. ChemCatChem 10(14):3040–3048. Nakajima T et al (2016) WO3 nanosponge photoanodes with high applied bias photon-to-current efficiency for solar hydrogen and peroxydisulfate production. J Mater Chem A 4:17809–1781CrossRef
93.
go back to reference Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893. Gratzel M et al (1983) Energy resources through photochemistry and catalysis. Academic Press, New YorkCrossRef Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893. Gratzel M et al (1983) Energy resources through photochemistry and catalysis. Academic Press, New YorkCrossRef
94.
go back to reference Saito N et al (2004) A new photocatalyst of RuO2-loaded PbWO4 for overall splitting of water. Chem Lett 33:1452–1453CrossRef Saito N et al (2004) A new photocatalyst of RuO2-loaded PbWO4 for overall splitting of water. Chem Lett 33:1452–1453CrossRef
95.
go back to reference Kudo A et al (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28:1103–1104CrossRef Kudo A et al (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28:1103–1104CrossRef
96.
go back to reference Kudo A et al (1998) Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3solution. Catal Lett 53:229–230CrossRef Kudo A et al (1998) Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3solution. Catal Lett 53:229–230CrossRef
97.
go back to reference Kim TW, Choi K-S (2014) Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRef Kim TW, Choi K-S (2014) Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRef
98.
go back to reference Yoon H et al (2015) Nanotextured pillars of electro sprayed bismuth vanadate for efficient photoelectrochemical water splitting. Langmuir 31(12):3727–3737CrossRef Yoon H et al (2015) Nanotextured pillars of electro sprayed bismuth vanadate for efficient photoelectrochemical water splitting. Langmuir 31(12):3727–3737CrossRef
99.
go back to reference Nasiri A et al (2017) Manganese vanadate nanostructure: facile precipitation preparation, characterization, and investigation of their photocatalyst activity. J Mater Sci Mater Electron 28(12):9096–9101CrossRef Nasiri A et al (2017) Manganese vanadate nanostructure: facile precipitation preparation, characterization, and investigation of their photocatalyst activity. J Mater Sci Mater Electron 28(12):9096–9101CrossRef
100.
go back to reference Yao X et al (2018) Scale-up of BiVO4 photoanode for water splitting in photoelectrochemical cell: issues and challenges. Energy Technol 6(1):100–110CrossRef Yao X et al (2018) Scale-up of BiVO4 photoanode for water splitting in photoelectrochemical cell: issues and challenges. Energy Technol 6(1):100–110CrossRef
101.
go back to reference Cooper JK et al (2014) Electronic structure of monoclinic BiVO4. Chem Mater 26(18):5365–5365CrossRef Cooper JK et al (2014) Electronic structure of monoclinic BiVO4. Chem Mater 26(18):5365–5365CrossRef
102.
go back to reference Cooper JK et al (2015) Indirect bandgap and optical properties of monoclinic bismuth vanadate. J Phys Chem C 119:2969–2974CrossRef Cooper JK et al (2015) Indirect bandgap and optical properties of monoclinic bismuth vanadate. J Phys Chem C 119:2969–2974CrossRef
103.
go back to reference Abdi FF et al (2013) The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4:2752–2757CrossRef Abdi FF et al (2013) The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4:2752–2757CrossRef
104.
go back to reference Pihosh Y et al (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141CrossRef Pihosh Y et al (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141CrossRef
105.
go back to reference Liu H et al (2005) Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem 6:2499–2250CrossRef Liu H et al (2005) Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem 6:2499–2250CrossRef
106.
go back to reference Liu H et al (2006) A visible – light responsive photocatalyst, BiZn2VO6 for efficient O2 – photoevolution from aqueous particulate suspension. Electrochem Solid-State Lett 9:G187. Abdi FF et al (2017) Recent developments in complex metal oxide photoelectrodes. J Phys D Appl Phys 50:193002–19302CrossRef Liu H et al (2006) A visible – light responsive photocatalyst, BiZn2VO6 for efficient O2 – photoevolution from aqueous particulate suspension. Electrochem Solid-State Lett 9:G187. Abdi FF et al (2017) Recent developments in complex metal oxide photoelectrodes. J Phys D Appl Phys 50:193002–19302CrossRef
108.
go back to reference Pareek A et al (2013) Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique. Int J Hydrog Energy 38:36–44CrossRef Pareek A et al (2013) Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique. Int J Hydrog Energy 38:36–44CrossRef
109.
go back to reference Pareek A et al (2014) Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation. Int J Hydrog Energy 39:4170–4180CrossRef Pareek A et al (2014) Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation. Int J Hydrog Energy 39:4170–4180CrossRef
110.
go back to reference Pareek A et al (2014) Nano-niobia modification of CdS photoanode for efficient and stable photoelectrochemical cell. Langmuir 30:15540CrossRef Pareek A et al (2014) Nano-niobia modification of CdS photoanode for efficient and stable photoelectrochemical cell. Langmuir 30:15540CrossRef
111.
go back to reference Pareek A et al (2013) Fabrication of a highly efficient and stable nano-modified photoanode for solar H2 generation. RSC Adv 3:19905–19908CrossRef Pareek A et al (2013) Fabrication of a highly efficient and stable nano-modified photoanode for solar H2 generation. RSC Adv 3:19905–19908CrossRef
112.
go back to reference Pareek A et al (2017) Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes. Mater Res Express 4:026203CrossRef Pareek A et al (2017) Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes. Mater Res Express 4:026203CrossRef
113.
go back to reference Pareek A et al (2017) Ultrathin MoS2–MoO3 nanosheets functionalized CdS photoanodes for effective charge transfer in photoelectrochemical (PEC) cells. J Mater Chem A 5:1541–1547CrossRef Pareek A et al (2017) Ultrathin MoS2–MoO3 nanosheets functionalized CdS photoanodes for effective charge transfer in photoelectrochemical (PEC) cells. J Mater Chem A 5:1541–1547CrossRef
114.
go back to reference Kirni M et al (2012) Preparation of Cu-doped Cd0.1Zn0.9S solid solution by hydrothermal method and its enhanced activity for hydrogen production under visible light irradiation. J Photochem Photobiol A 230:15–22CrossRef Kirni M et al (2012) Preparation of Cu-doped Cd0.1Zn0.9S solid solution by hydrothermal method and its enhanced activity for hydrogen production under visible light irradiation. J Photochem Photobiol A 230:15–22CrossRef
115.
go back to reference Chai B et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155CrossRef Chai B et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155CrossRef
116.
go back to reference Bhirud A et al (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrog Energy 36:11628–11639CrossRef Bhirud A et al (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrog Energy 36:11628–11639CrossRef
117.
go back to reference Matsumura M et al (1983) Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J Phys Chem 87:3807–3808CrossRef Matsumura M et al (1983) Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J Phys Chem 87:3807–3808CrossRef
118.
go back to reference Reber JF et al (1984) Photochemical production of hydrogen with zinc sulfide suspensions. J Phys Chem 88:5903–5913CrossRef Reber JF et al (1984) Photochemical production of hydrogen with zinc sulfide suspensions. J Phys Chem 88:5903–5913CrossRef
119.
go back to reference Xing C et al (2006) Band structure-controlled solid solution of Cd1 - xZnx S photocatalyst for hydrogen production by water splitting. Int J Hydrog Energy 31:2018–2024CrossRef Xing C et al (2006) Band structure-controlled solid solution of Cd1 - xZnx S photocatalyst for hydrogen production by water splitting. Int J Hydrog Energy 31:2018–2024CrossRef
120.
go back to reference Jang JS et al (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287CrossRef Jang JS et al (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287CrossRef
121.
go back to reference Zong X et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177CrossRef Zong X et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177CrossRef
122.
go back to reference Yan H et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168CrossRef Yan H et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168CrossRef
123.
go back to reference Jang JS et al (2008) Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl Catal A 346:149–154CrossRef Jang JS et al (2008) Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl Catal A 346:149–154CrossRef
124.
go back to reference Zhang K et al (2007) Significantly improved photocatalytic hydrogen production activity over Cd1- x Znx S photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32:4685–4691CrossRef Zhang K et al (2007) Significantly improved photocatalytic hydrogen production activity over Cd1- x Znx S photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32:4685–4691CrossRef
125.
go back to reference Tsuji I et al (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (Agln)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126:13406–13413CrossRef Tsuji I et al (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (Agln)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126:13406–13413CrossRef
126.
go back to reference Lei Z et al (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 17:2142–2143CrossRef Lei Z et al (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 17:2142–2143CrossRef
127.
go back to reference Shen S et al (2009) Optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Mater Res Bull 44:100–105CrossRef Shen S et al (2009) Optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Mater Res Bull 44:100–105CrossRef
128.
go back to reference Jang JS et al (2008) Indium induced band gap tailoring in Ag Ga1-x Inx S2 chalcopyrite structure for visible light photocatalysis. J Chem Phys 128:1–6 Jang JS et al (2008) Indium induced band gap tailoring in Ag Ga1-x Inx S2 chalcopyrite structure for visible light photocatalysis. J Chem Phys 128:1–6
129.
go back to reference Kale BB et al (2006) CdIn2S4 nanotubes and “marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354CrossRef Kale BB et al (2006) CdIn2S4 nanotubes and “marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354CrossRef
130.
go back to reference Bhirud A et al (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrog Energy 36:11628–11639CrossRef Bhirud A et al (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrog Energy 36:11628–11639CrossRef
131.
go back to reference Pareek A et al (2017) Nanostructure Zn–Cu co-doped CdS chalcogenide electrodes for opto-electric-power and H2 generation. Int J Hydrog Energy 42(1):125–132CrossRef Pareek A et al (2017) Nanostructure Zn–Cu co-doped CdS chalcogenide electrodes for opto-electric-power and H2 generation. Int J Hydrog Energy 42(1):125–132CrossRef
132.
go back to reference Roy AM et al (2003) Immobilization of CdS, ZnS and mixed ZnS-CdS on filter paper. Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J Photochem Photobiol A 157:87–92CrossRef Roy AM et al (2003) Immobilization of CdS, ZnS and mixed ZnS-CdS on filter paper. Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J Photochem Photobiol A 157:87–92CrossRef
133.
go back to reference Chai B et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155CrossRef Chai B et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155CrossRef
134.
go back to reference Kaga H et al (2010) Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures. Chem Commun 46:3779–3781CrossRef Kaga H et al (2010) Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures. Chem Commun 46:3779–3781CrossRef
135.
go back to reference Kudo A et al (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 2(17):1958–1959CrossRef Kudo A et al (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 2(17):1958–1959CrossRef
136.
go back to reference Gregory DH et al (1999) Structural families in nitride chemistry. J Chem Soc Dalton Trans 3:259–270 Gregory DH et al (1999) Structural families in nitride chemistry. J Chem Soc Dalton Trans 3:259–270
137.
go back to reference Su J et al (2017) Stability and performance of sulfide-, nitride-, and phosphide-based. J Phys Chem Letts 8:5228–5238CrossRef Su J et al (2017) Stability and performance of sulfide-, nitride-, and phosphide-based. J Phys Chem Letts 8:5228–5238CrossRef
138.
go back to reference Liu G et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9:1327–1334CrossRef Liu G et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9:1327–1334CrossRef
139.
go back to reference Wang D et al (2011) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11:2353–2357CrossRef Wang D et al (2011) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11:2353–2357CrossRef
140.
go back to reference Gholipour MR et al (2017) Post-calcined carbon nitride nanosheets as an efficient photocatalyst for hydrogen production under visible light irradiation. ACS Sustain Chem Eng 5:213–220CrossRef Gholipour MR et al (2017) Post-calcined carbon nitride nanosheets as an efficient photocatalyst for hydrogen production under visible light irradiation. ACS Sustain Chem Eng 5:213–220CrossRef
141.
go back to reference Island JO et al (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002CrossRef Island JO et al (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002CrossRef
142.
go back to reference Zhu M et al (2017) Black phosphorus: a promising two dimensional visible andnear-infrared-activated photocatalyst for hydrogen evolution. Appl Catal 217:285–229CrossRef Zhu M et al (2017) Black phosphorus: a promising two dimensional visible andnear-infrared-activated photocatalyst for hydrogen evolution. Appl Catal 217:285–229CrossRef
144.
go back to reference Wen M et al (2018) A low-cost metal-free photocatalyst based on black phosphorus. Adv Sci 1801321:1–7 Wen M et al (2018) A low-cost metal-free photocatalyst based on black phosphorus. Adv Sci 1801321:1–7
145.
go back to reference Yuan Y-J et al (2018) Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts. Chem Commun 54:960–963CrossRef Yuan Y-J et al (2018) Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts. Chem Commun 54:960–963CrossRef
146.
go back to reference Tian B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat Commun 9:1397. -1-11CrossRef Tian B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat Commun 9:1397. -1-11CrossRef
147.
go back to reference Paulose M et al (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184CrossRef Paulose M et al (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184CrossRef
148.
go back to reference Xiang Q (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Cat B 138:299–303CrossRef Xiang Q (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Cat B 138:299–303CrossRef
149.
go back to reference Zha R (2015) Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J Mater Chem A 3:6565–6657CrossRef Zha R (2015) Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J Mater Chem A 3:6565–6657CrossRef
150.
go back to reference Chen F (2013) Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. J Colloid Interface Sci 404:110–116CrossRef Chen F (2013) Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. J Colloid Interface Sci 404:110–116CrossRef
151.
go back to reference Liu Y (2012) A magnetically separable photocatalyst based on nest – like γ- Fe2O3/ZnO double – shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4:183–187CrossRef Liu Y (2012) A magnetically separable photocatalyst based on nest – like γ- Fe2O3/ZnO double – shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4:183–187CrossRef
152.
go back to reference Chen CK et al (2014) Quantum-dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting. Eur J Inorg Chem 2014:773–779CrossRef Chen CK et al (2014) Quantum-dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting. Eur J Inorg Chem 2014:773–779CrossRef
153.
go back to reference Chandrasekaran S et al (2015) Highly – ordered maghemite/reduced graphene oxide nanocomposites for high performance photoelectrochemical water splitting. RSC Adv 5:29159–29166CrossRef Chandrasekaran S et al (2015) Highly – ordered maghemite/reduced graphene oxide nanocomposites for high performance photoelectrochemical water splitting. RSC Adv 5:29159–29166CrossRef
154.
go back to reference Kim JH et al (2016) Hetero – type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun 7:1–9 Kim JH et al (2016) Hetero – type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun 7:1–9
155.
go back to reference Zhang S et al (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1173CrossRef Zhang S et al (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1173CrossRef
156.
go back to reference Asadi M et al (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun 5:1–8CrossRef Asadi M et al (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun 5:1–8CrossRef
157.
go back to reference Gao L et al (2014) Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano Lett 14:3715–37191CrossRef Gao L et al (2014) Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano Lett 14:3715–37191CrossRef
158.
go back to reference Wang H-P et al (2015) High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett 15:2817–2282CrossRef Wang H-P et al (2015) High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett 15:2817–2282CrossRef
159.
go back to reference Song JT et al (2017) Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv Energy Mater 7:16011003 Song JT et al (2017) Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv Energy Mater 7:16011003
160.
go back to reference Kast MG et al (2014) Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathode. ACS Appl Mater Interfaces 6:22830–22837CrossRef Kast MG et al (2014) Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathode. ACS Appl Mater Interfaces 6:22830–22837CrossRef
161.
go back to reference Zhou X et al (2016) Solar driven reduction of 1 atm of CO2 to formate at 10% energy – conversion efficiency by use of a TiO2 protected III – V tandem Photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett 1:764–777CrossRef Zhou X et al (2016) Solar driven reduction of 1 atm of CO2 to formate at 10% energy – conversion efficiency by use of a TiO2 protected III – V tandem Photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett 1:764–777CrossRef
162.
go back to reference Ji L et al (2014) A silicon based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat Nanotachnol 10:84CrossRef Ji L et al (2014) A silicon based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat Nanotachnol 10:84CrossRef
163.
go back to reference Kang D et al (2017) Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted water splitting. Nat Energy 2:17043CrossRef Kang D et al (2017) Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted water splitting. Nat Energy 2:17043CrossRef
164.
go back to reference Kumagai H et al (2015) Efficient solar hydrogen production from neutral electrolytes using surface modified Cu(In, Ga)Se2 photocathodes. J Mater Chem A 3:8300–8307CrossRef Kumagai H et al (2015) Efficient solar hydrogen production from neutral electrolytes using surface modified Cu(In, Ga)Se2 photocathodes. J Mater Chem A 3:8300–8307CrossRef
165.
go back to reference Fan S et al (2015) High efficiency solar to hydrogen conversion on monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett 15:2721–2272CrossRef Fan S et al (2015) High efficiency solar to hydrogen conversion on monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett 15:2721–2272CrossRef
166.
go back to reference Morales-Guio CG et al (2015) Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth – abundant hydrogen evolution catalysts. Angew Chem Int Ed Engl 54:664 Morales-Guio CG et al (2015) Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth – abundant hydrogen evolution catalysts. Angew Chem Int Ed Engl 54:664
Metadata
Title
Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy
Author
Pramod H. Borse
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_52

Premium Partners