Skip to main content
Top

2023 | OriginalPaper | Chapter

14. Nano-engineered 2D Materials for CO2 Capture

Authors : Neeraj Kumar, Rashi Gusain, Suprakas Sinha Ray

Published in: Two-Dimensional Materials for Environmental Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, nano-engineered two-dimensional (2D) materials have gained immense interest in various applications, including CO2 capture. The precise atomic structure of 2D nanomaterials introduced various significant characteristics required for specific applications. Increasing levels of CO2 in the environment is a concerning topic for surviving a sustainable life on Earth. Therefore, CO2 capture and conversion into useful products have been recognized as the best approach to reduce the CO2 level in the atmosphere. To capture CO2, several materials have been studied and emphasised about their advantages and disadvantages. The recent progress in 2D materials, especially graphene-based materials, has shown their potential in CO2 capture. Graphene-based materials, transition metal dichalcogenides (TMDCs), 2D transition metal oxides (TMOs), MXenes, boron nitrides, carbon nitrides, 2D metal–organic frameworks (MOFs) etc., are the various examples of 2D materials, which have been investigated for CO2 capture. This chapter aims to provide a brief overview of the recent advantages in the nano-engineering of the various 2D materials for CO2 capture. In particular, the recent development of emerging strategies such as doping, defects engineering, hetero-structural designing, and architectural functionalization of 2D nanomaterials for enhanced CO2 capture are discussed thoroughly. The challenges and future outcomes have also been highlighted, which will open the directions for future research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Zhang, W. Zhang, R. Yang, Y. Liu, M. Jafari, CO2 capture and storage monitoring based on remote sensing techniques: a review. J. Clean. Prod. 281, 124409 (2021)CrossRef T. Zhang, W. Zhang, R. Yang, Y. Liu, M. Jafari, CO2 capture and storage monitoring based on remote sensing techniques: a review. J. Clean. Prod. 281, 124409 (2021)CrossRef
2.
go back to reference B. Netz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers (2007) B. Netz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers (2007)
3.
go back to reference R. Gusain, N. Kumar, S.S. Ray, Metal oxide-based nanocomposites for photocatalytic reduction of CO2 Adv. Mater. Sustain. Environ., pp. 293–315 (2022). CRC Press R. Gusain, N. Kumar, S.S. Ray, Metal oxide-based nanocomposites for photocatalytic reduction of CO2 Adv. Mater. Sustain. Environ., pp. 293–315 (2022). CRC Press
4.
go back to reference S. Dey, G.C. Dhal, Materials progress in the control of CO and CO2 emission at ambient conditions: an overview. Mater. Sci. Energy Technol. 2(3), 607–623 (2019) S. Dey, G.C. Dhal, Materials progress in the control of CO and CO2 emission at ambient conditions: an overview. Mater. Sci. Energy Technol. 2(3), 607–623 (2019)
5.
go back to reference N.S. Sifat, Y. Haseli, A critical review of CO2 capture technologies and prospects for clean power generation. Energies 12(21), 4143 (2019)CrossRef N.S. Sifat, Y. Haseli, A critical review of CO2 capture technologies and prospects for clean power generation. Energies 12(21), 4143 (2019)CrossRef
6.
go back to reference A. Saravanan, D.-V.N. Vo, S. Jeevanantham, V. Bhuvaneswari, V.A. Narayanan, P. Yaashikaa, et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci., 236, 116515 (2021). A. Saravanan, D.-V.N. Vo, S. Jeevanantham, V. Bhuvaneswari, V.A. Narayanan, P. Yaashikaa, et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci., 236, 116515 (2021).
7.
go back to reference A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35(6), 2610–2628 (2010)CrossRef A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35(6), 2610–2628 (2010)CrossRef
8.
go back to reference J. Pires, F. Martins, M. Alvim-Ferraz, M. Simões, Recent developments on carbon capture and storage: an overview. Chem. Eng. Res. Des. 89(9), 1446–1460 (2011)CrossRef J. Pires, F. Martins, M. Alvim-Ferraz, M. Simões, Recent developments on carbon capture and storage: an overview. Chem. Eng. Res. Des. 89(9), 1446–1460 (2011)CrossRef
9.
go back to reference S. Lian, C. Song, Q. Liu, E. Duan, H. Ren, Y. Kitamura, Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J. Environ. Sci. 99, 281–295 (2021)CrossRef S. Lian, C. Song, Q. Liu, E. Duan, H. Ren, Y. Kitamura, Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J. Environ. Sci. 99, 281–295 (2021)CrossRef
10.
go back to reference A. Sattari, A. Ramazani, H. Aghahosseini, M.K. Aroua, The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J. CO2 Utilization; 48, 101526 (2021) A. Sattari, A. Ramazani, H. Aghahosseini, M.K. Aroua, The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J. CO2 Utilization; 48, 101526 (2021)
11.
go back to reference U. Kamran, S.-J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J. Clean. Prod. 290, 125776 (2021)CrossRef U. Kamran, S.-J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J. Clean. Prod. 290, 125776 (2021)CrossRef
12.
go back to reference D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 013007 (2008)CrossRef D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 013007 (2008)CrossRef
13.
go back to reference N. Mat, S.N. Timmiati, L.P. The, Recent development in metal oxide-based core–shell material for CO2 capture and utilisation. Appl. Nanosci., 1–21 (2022) N. Mat, S.N. Timmiati, L.P. The, Recent development in metal oxide-based core–shell material for CO2 capture and utilisation. Appl. Nanosci., 1–21 (2022)
14.
go back to reference Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ. Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ.
15.
go back to reference C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 1–16 (2017)CrossRef C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 1–16 (2017)CrossRef
16.
go back to reference E. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng.g. 6(10), 1701–1738 (2021)CrossRef E. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng.g. 6(10), 1701–1738 (2021)CrossRef
17.
go back to reference E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: review of CO2 capture and reuse technologies. J. Supercritical Fluids. 132, 3–16 (2018)CrossRef E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: review of CO2 capture and reuse technologies. J. Supercritical Fluids. 132, 3–16 (2018)CrossRef
18.
go back to reference T.N. Borhani, M. Wang, Role of solvents in CO2 capture processes:tThe review of selection and design methods. Renew. Sustain. Energy Rev. 114, 109299 (2019)CrossRef T.N. Borhani, M. Wang, Role of solvents in CO2 capture processes:tThe review of selection and design methods. Renew. Sustain. Energy Rev. 114, 109299 (2019)CrossRef
19.
go back to reference B. Shao, Y. Zhang, Z. Sun, J. Li, Z. Gao, Z. Xie et al., CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chem. Eng. 3(3), 189–198 (2022)CrossRef B. Shao, Y. Zhang, Z. Sun, J. Li, Z. Gao, Z. Xie et al., CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chem. Eng. 3(3), 189–198 (2022)CrossRef
20.
go back to reference M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M.M. Abdelnaby et al., Advanced strategies in metal-organic frameworks for CO2 capture and separation. Chem. Rec. 22(7), e202100230 (2022)CrossRef M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M.M. Abdelnaby et al., Advanced strategies in metal-organic frameworks for CO2 capture and separation. Chem. Rec. 22(7), e202100230 (2022)CrossRef
21.
go back to reference M. Aghaie, N. Rezaei, S. Zendehboudi, A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 96, 502–525 (2018)CrossRef M. Aghaie, N. Rezaei, S. Zendehboudi, A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 96, 502–525 (2018)CrossRef
22.
go back to reference M. Haaf, R. Anantharaman, S. Roussanaly, J. Ströhle, B. Epple, CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 162, 104973 (2020)CrossRef M. Haaf, R. Anantharaman, S. Roussanaly, J. Ströhle, B. Epple, CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 162, 104973 (2020)CrossRef
23.
go back to reference E. Paoletti, F. Manes, Effects of elevated carbon dioxide and acidic rain on the growth of holm oak. Developments in Environmental Science. 3: Elsevier; p. 375–89 (2003) E. Paoletti, F. Manes, Effects of elevated carbon dioxide and acidic rain on the growth of holm oak. Developments in Environmental Science. 3: Elsevier; p. 375–89 (2003)
24.
go back to reference M. Cellura, F. Guarino, S. Longo, G. Tumminia, Climate change and the building sector: modelling and energy implications to an office building in southern Europe. Energy Sustain. Dev. 45, 46–65 (2018)CrossRef M. Cellura, F. Guarino, S. Longo, G. Tumminia, Climate change and the building sector: modelling and energy implications to an office building in southern Europe. Energy Sustain. Dev. 45, 46–65 (2018)CrossRef
25.
go back to reference J. Kahl, Effect of acid rain on building material of the El Tajín archaeological zone in Veracruz. Mexico. Environ. Pollut. 144(2), 655–660 (2006)CrossRef J. Kahl, Effect of acid rain on building material of the El Tajín archaeological zone in Veracruz. Mexico. Environ. Pollut. 144(2), 655–660 (2006)CrossRef
26.
go back to reference H. Kurihara, Y. Shirayama, Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser. 274, 161–169 (2004)CrossRef H. Kurihara, Y. Shirayama, Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser. 274, 161–169 (2004)CrossRef
27.
go back to reference J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption. Chem. Rev. 121(13), 7280–7345 (2021)CrossRef J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption. Chem. Rev. 121(13), 7280–7345 (2021)CrossRef
28.
go back to reference W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49(23), 8584–8686 (2020)CrossRef W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49(23), 8584–8686 (2020)CrossRef
29.
go back to reference B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture. J. CO2 Utilization 1, 69–87 (2013) B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture. J. CO2 Utilization 1, 69–87 (2013)
30.
go back to reference M. Younas, M. Sohail, L.K. Leong, M.J. Bashir, S. Sumathi, Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int. J. Environ. Sci. Technol. 13(7), 1839–1860 (2016)CrossRef M. Younas, M. Sohail, L.K. Leong, M.J. Bashir, S. Sumathi, Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int. J. Environ. Sci. Technol. 13(7), 1839–1860 (2016)CrossRef
31.
go back to reference L.-P. Merkouri, T.R. Reina, M.S. Duyar, Closing the carbon cycle with dual function materials. Energy Fuels 35(24), 19859–19880 (2021)CrossRef L.-P. Merkouri, T.R. Reina, M.S. Duyar, Closing the carbon cycle with dual function materials. Energy Fuels 35(24), 19859–19880 (2021)CrossRef
32.
go back to reference H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, J. Huang, Progress in the development and application of CaO-based adsorbents for CO2 capture—a review. Mater. Today Sustain. 1–2, 1–27 (2018) H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, J. Huang, Progress in the development and application of CaO-based adsorbents for CO2 capture—a review. Mater. Today Sustain. 1–2, 1–27 (2018)
33.
go back to reference L. Yang, J. Heinlein, C. Hua, R. Gao, S. Hu, L. Pfefferle et al., Emerging dual-functional 2D transition metal oxides for carbon capture and utilization: a review. Fuel 324, 124706 (2022)CrossRef L. Yang, J. Heinlein, C. Hua, R. Gao, S. Hu, L. Pfefferle et al., Emerging dual-functional 2D transition metal oxides for carbon capture and utilization: a review. Fuel 324, 124706 (2022)CrossRef
34.
go back to reference E.J. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng. 6(10), 1701–1738 (2021)CrossRef E.J. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng. 6(10), 1701–1738 (2021)CrossRef
35.
go back to reference A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 15(3), 1012 (2022)CrossRef A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 15(3), 1012 (2022)CrossRef
36.
go back to reference R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B 181, 352–362 (2016)CrossRef R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B 181, 352–362 (2016)CrossRef
37.
go back to reference R. Gusain, H.P. Mungse, N. Kumar, T.R. Ravindran, R. Pandian, H. Sugimura et al., Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. J. Mater. Chem. A 4(3), 926–937 (2016)CrossRef R. Gusain, H.P. Mungse, N. Kumar, T.R. Ravindran, R. Pandian, H. Sugimura et al., Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. J. Mater. Chem. A 4(3), 926–937 (2016)CrossRef
38.
go back to reference N. Mukwevho, R. Gusain, E. Fosso-Kankeu, N. Kumar, F. Waanders, S.S. Ray, Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. J. Ind. Eng. Chem. 81, 393–404 (2020)CrossRef N. Mukwevho, R. Gusain, E. Fosso-Kankeu, N. Kumar, F. Waanders, S.S. Ray, Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. J. Ind. Eng. Chem. 81, 393–404 (2020)CrossRef
39.
go back to reference A. Ali, R. Pothu, S.H. Siyal, S. Phulpoto, M. Sajjad, K.H. Thebo, Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol. 2(1), 83–88 (2019) A. Ali, R. Pothu, S.H. Siyal, S. Phulpoto, M. Sajjad, K.H. Thebo, Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol. 2(1), 83–88 (2019)
40.
go back to reference P. Li, H.C. Zeng, Hierarchical nanocomposite by the integration of reduced graphene oxide and amorphous carbon with ultrafine MgO nanocrystallites for enhanced CO2 capture. Environ. Sci. Technol. 51(21), 12998–13007 (2017)CrossRef P. Li, H.C. Zeng, Hierarchical nanocomposite by the integration of reduced graphene oxide and amorphous carbon with ultrafine MgO nanocrystallites for enhanced CO2 capture. Environ. Sci. Technol. 51(21), 12998–13007 (2017)CrossRef
41.
go back to reference N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of graphene: a comprehensive review. FlatChem. 27, 100224 (2021)CrossRef N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of graphene: a comprehensive review. FlatChem. 27, 100224 (2021)CrossRef
42.
go back to reference L. Jiang, Z. Fan, Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4), 1922–1945 (2014)MathSciNetCrossRef L. Jiang, Z. Fan, Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4), 1922–1945 (2014)MathSciNetCrossRef
43.
go back to reference J. Oh, Y.-H. Mo, V.-D. Le, S. Lee, J. Han, G. Park et al., Borane-modified graphene-based materials as CO2 adsorbents. Carbon 79, 450–456 (2014)CrossRef J. Oh, Y.-H. Mo, V.-D. Le, S. Lee, J. Han, G. Park et al., Borane-modified graphene-based materials as CO2 adsorbents. Carbon 79, 450–456 (2014)CrossRef
44.
go back to reference Z.-Y. Sui, B.-H. Han, Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon 82, 590–598 (2015)CrossRef Z.-Y. Sui, B.-H. Han, Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon 82, 590–598 (2015)CrossRef
45.
go back to reference D. Kim, D.W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung et al., Intercalation of gas molecules in graphene oxide interlayer: The role of water. Jo. Phys. Chem. C. 118(20), 11142–11148 (2014)CrossRef D. Kim, D.W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung et al., Intercalation of gas molecules in graphene oxide interlayer: The role of water. Jo. Phys. Chem. C. 118(20), 11142–11148 (2014)CrossRef
46.
go back to reference A.K. Mishra, S. Ramaprabhu, Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J. Mater. Chem. 22(9), 3708–3712 (2012)CrossRef A.K. Mishra, S. Ramaprabhu, Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J. Mater. Chem. 22(9), 3708–3712 (2012)CrossRef
47.
go back to reference A.K. Mishra, S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets. AIP Adv. 1(3), 032152 (2011)CrossRef A.K. Mishra, S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets. AIP Adv. 1(3), 032152 (2011)CrossRef
48.
go back to reference G.-J. Shin, K. Rhee, S.-J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int. J. Hydrogen Energy 41(32), 14351–14359 (2016)CrossRef G.-J. Shin, K. Rhee, S.-J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int. J. Hydrogen Energy 41(32), 14351–14359 (2016)CrossRef
49.
go back to reference Y. Liu, B. Sajjadi, W.-Y. Chen, R. Chatterjee, Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247, 10–18 (2019)CrossRef Y. Liu, B. Sajjadi, W.-Y. Chen, R. Chatterjee, Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247, 10–18 (2019)CrossRef
50.
go back to reference J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos et al., CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)CrossRef J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos et al., CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)CrossRef
51.
go back to reference N. Hsan, P. Dutta, S. Kumar, R. Bera, N. Das, Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromol. 125, 300–306 (2019)CrossRef N. Hsan, P. Dutta, S. Kumar, R. Bera, N. Das, Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromol. 125, 300–306 (2019)CrossRef
52.
go back to reference R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)CrossRef R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)CrossRef
53.
go back to reference K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021)CrossRef K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021)CrossRef
54.
go back to reference R. Gusain, O.P. Khatri, Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. J. Mater. Chem. A 1(18), 5612–5619 (2013)CrossRef R. Gusain, O.P. Khatri, Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. J. Mater. Chem. A 1(18), 5612–5619 (2013)CrossRef
55.
go back to reference Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chem. Soc. Rev. 41(14), 4909–4927 (2012)CrossRef Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chem. Soc. Rev. 41(14), 4909–4927 (2012)CrossRef
56.
go back to reference M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy et al., A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12), 1604 (2020)CrossRef M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy et al., A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12), 1604 (2020)CrossRef
57.
go back to reference A. Azmi, A. Ruhaimi, M. Aziz, Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture. Mater. Today Chem. 16, 100273 (2020)CrossRef A. Azmi, A. Ruhaimi, M. Aziz, Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture. Mater. Today Chem. 16, 100273 (2020)CrossRef
58.
go back to reference J.C. Védrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. Chemsuschem 12(3), 577–588 (2019)CrossRef J.C. Védrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. Chemsuschem 12(3), 577–588 (2019)CrossRef
59.
go back to reference Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao et al., Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas. Fuel 243, 298–305 (2019)CrossRef Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao et al., Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas. Fuel 243, 298–305 (2019)CrossRef
60.
go back to reference P. Li, R. Chen, Y. Lin, W. Li, General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chem. Eng. J. 404, 126459 (2021)CrossRef P. Li, R. Chen, Y. Lin, W. Li, General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chem. Eng. J. 404, 126459 (2021)CrossRef
61.
go back to reference Y. Hu, Y. Guo, J. Sun, H. Li, W. Liu, Progress in MgO sorbents for cyclic CO2 capture: a comprehensive review. J. Mater. Chem. A 7(35), 20103–20120 (2019)CrossRef Y. Hu, Y. Guo, J. Sun, H. Li, W. Liu, Progress in MgO sorbents for cyclic CO2 capture: a comprehensive review. J. Mater. Chem. A 7(35), 20103–20120 (2019)CrossRef
62.
go back to reference F.E.C. Othman, N. Yusof, S. Samitsu, N. Abdullah, M.F. Hamid, K. Nagai, et al. Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides. J. CO2 Utilization 45, 101434 (2021) F.E.C. Othman, N. Yusof, S. Samitsu, N. Abdullah, M.F. Hamid, K. Nagai, et al. Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides. J. CO2 Utilization 45, 101434 (2021)
63.
go back to reference W.N.R. Wan Isahak, Z.A.C. Ramli, M.W. Mohamed Hisham, M.A. Yarmo (eds.), Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent. AIP Conference Proceedings; 2013: American Institute of Physics W.N.R. Wan Isahak, Z.A.C. Ramli, M.W. Mohamed Hisham, M.A. Yarmo (eds.), Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent. AIP Conference Proceedings; 2013: American Institute of Physics
64.
go back to reference R. Chang, X. Wu, O. Cheung, W. Liu, Synthetic solid oxide sorbents for CO2 capture: state-of-the art and future perspectives. J. Mater. Chem. A (2022) R. Chang, X. Wu, O. Cheung, W. Liu, Synthetic solid oxide sorbents for CO2 capture: state-of-the art and future perspectives. J. Mater. Chem. A (2022)
65.
go back to reference B.W. Hwang, J.H. Lim, H.J. Chae, H.-J. Ryu, D. Lee, J.B. Lee et al., CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process. Process Saf. Environ. Prot. 116, 219–227 (2018)CrossRef B.W. Hwang, J.H. Lim, H.J. Chae, H.-J. Ryu, D. Lee, J.B. Lee et al., CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process. Process Saf. Environ. Prot. 116, 219–227 (2018)CrossRef
66.
go back to reference J.-S. Kwak, K.-R. Oh, K.-Y. Kim, J.-M. Lee, Y.-U. Kwon, CO 2 absorption and desorption characteristics of MgO-based absorbent promoted by triple eutectic alkali carbonate. Phys. Chem. Chem. Phys. 21(37), 20805–20813 (2019)CrossRef J.-S. Kwak, K.-R. Oh, K.-Y. Kim, J.-M. Lee, Y.-U. Kwon, CO 2 absorption and desorption characteristics of MgO-based absorbent promoted by triple eutectic alkali carbonate. Phys. Chem. Chem. Phys. 21(37), 20805–20813 (2019)CrossRef
67.
go back to reference L.K.G. Bhatta, U.M. Bhatta, K. Venkatesh, Metal oxides for carbon dioxide capture, in Inamuddin, Asiri A.M., Lichtfouse, E. (eds.), Sustainable Agriculture Reviews 38: Carbon Sequestration Vol 2 Materials and Chemical Methods. Cham: Springer International Publishing, p. 63–83 (2019) L.K.G. Bhatta, U.M. Bhatta, K. Venkatesh, Metal oxides for carbon dioxide capture, in Inamuddin, Asiri A.M., Lichtfouse, E. (eds.), Sustainable Agriculture Reviews 38: Carbon Sequestration Vol 2 Materials and Chemical Methods. Cham: Springer International Publishing, p. 63–83 (2019)
68.
go back to reference N.H. Florin, A.T. Harris, Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem. Eng. Sci. 64(2), 187–191 (2009)CrossRef N.H. Florin, A.T. Harris, Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem. Eng. Sci. 64(2), 187–191 (2009)CrossRef
69.
go back to reference O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem. 29, 100281 (2021)CrossRef O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem. 29, 100281 (2021)CrossRef
70.
go back to reference M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)CrossRef M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)CrossRef
71.
go back to reference M.W. Barsoum, Y. Gogotsi, Removing roadblocks and opening new opportunities for MXenes. Ceramics Int. (2022) M.W. Barsoum, Y. Gogotsi, Removing roadblocks and opening new opportunities for MXenes. Ceramics Int. (2022)
72.
go back to reference L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021)CrossRef L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021)CrossRef
73.
go back to reference V. Parey, B.M. Abraham, S.H. Mir, J.K. Singh, High-throughput screening of atomic defects in Mxenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces. 13(30), 35585–35594 (2021)CrossRef V. Parey, B.M. Abraham, S.H. Mir, J.K. Singh, High-throughput screening of atomic defects in Mxenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces. 13(30), 35585–35594 (2021)CrossRef
74.
go back to reference Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ 7(3), 394–410 (2022)CrossRef Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ 7(3), 394–410 (2022)CrossRef
75.
go back to reference Á. Morales-García, A. Fernández-Fernández, F. Viñes, F. Illas, CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)CrossRef Á. Morales-García, A. Fernández-Fernández, F. Viñes, F. Illas, CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)CrossRef
76.
go back to reference B. Wang, A. Zhou, F. Liu, J. Cao, L. Wang, Q. Hu, Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceramics 7(3), 237–245 (2018)CrossRef B. Wang, A. Zhou, F. Liu, J. Cao, L. Wang, Q. Hu, Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceramics 7(3), 237–245 (2018)CrossRef
77.
go back to reference I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.-Å. Näslund et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31(2), 1805472 (2019)CrossRef I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.-Å. Näslund et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31(2), 1805472 (2019)CrossRef
78.
go back to reference Á. Morales-García, M. Mayans-Llorach, F. Viñes, F. Illas, Thickness biased capture of CO2 on carbide MXenes. Phys. Chem. Chem. Phys. 21(41), 23136–23142 (2019)CrossRef Á. Morales-García, M. Mayans-Llorach, F. Viñes, F. Illas, Thickness biased capture of CO2 on carbide MXenes. Phys. Chem. Chem. Phys. 21(41), 23136–23142 (2019)CrossRef
79.
go back to reference Z. Guo, Y. Li, B. Sa, Y. Fang, J. Lin, Y. Huang et al., M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 521, 146436 (2020)CrossRef Z. Guo, Y. Li, B. Sa, Y. Fang, J. Lin, Y. Huang et al., M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 521, 146436 (2020)CrossRef
80.
go back to reference R. Morales-Salvador, Á. Morales-García, F. Viñes, F. Illas, Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20(25), 17117–17124 (2018)CrossRef R. Morales-Salvador, Á. Morales-García, F. Viñes, F. Illas, Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20(25), 17117–17124 (2018)CrossRef
81.
go back to reference F.-Q. Liu, X. Liu, L. Sun, R. Li, C.-X. Yin, B. Wu, MXene-supported stable adsorbents for superior CO2 capture. J. Materials Chem. A 9(21), 12763–12771 (2021)CrossRef F.-Q. Liu, X. Liu, L. Sun, R. Li, C.-X. Yin, B. Wu, MXene-supported stable adsorbents for superior CO2 capture. J. Materials Chem. A 9(21), 12763–12771 (2021)CrossRef
82.
go back to reference A.A. Shamsabadi, A.P. Isfahani, S.K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2020)CrossRef A.A. Shamsabadi, A.P. Isfahani, S.K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2020)CrossRef
83.
go back to reference S. Ghosh, S. Ramaprabhu, High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Utilization 21, 89–99 (2017) S. Ghosh, S. Ramaprabhu, High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Utilization 21, 89–99 (2017)
84.
go back to reference Y. Oh, V.-D. Le, U.N. Maiti, J.O. Hwang, W.J. Park, J. Lim et al., Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 9(9), 9148–9157 (2015)CrossRef Y. Oh, V.-D. Le, U.N. Maiti, J.O. Hwang, W.J. Park, J. Lim et al., Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 9(9), 9148–9157 (2015)CrossRef
85.
go back to reference S.A. Anuar, K.N. Ahmad, A. Al-Amiery, M.S. Masdar, W.N.R. Wan Isahak, Facile preparation of carbon nitride-ZnO hybrid adsorbent for CO2 capture: the significant role of amine source to metal oxide ratio. Catalysts 11(10), 1253 (2021)CrossRef S.A. Anuar, K.N. Ahmad, A. Al-Amiery, M.S. Masdar, W.N.R. Wan Isahak, Facile preparation of carbon nitride-ZnO hybrid adsorbent for CO2 capture: the significant role of amine source to metal oxide ratio. Catalysts 11(10), 1253 (2021)CrossRef
86.
go back to reference B. Szczęśniak, S. Borysiuk, J. Choma, M. Jaroniec, Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7(6), 1457–1473 (2020)CrossRef B. Szczęśniak, S. Borysiuk, J. Choma, M. Jaroniec, Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7(6), 1457–1473 (2020)CrossRef
87.
go back to reference A.K. Mishra, S. Ramaprabhu, Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. J. Appl. Phys. 116(6), 064306 (2014)CrossRef A.K. Mishra, S. Ramaprabhu, Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. J. Appl. Phys. 116(6), 064306 (2014)CrossRef
88.
go back to reference J. Xiao, Y. Wang, T.C. Zhang, S. Yuan, rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J. Alloy. Compd. 857, 157534 (2021)CrossRef J. Xiao, Y. Wang, T.C. Zhang, S. Yuan, rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J. Alloy. Compd. 857, 157534 (2021)CrossRef
89.
go back to reference S. Jin, Y. Guo, J. Wang, L. Wang, Q. Hu, A. Zhou, Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)CrossRef S. Jin, Y. Guo, J. Wang, L. Wang, Q. Hu, A. Zhou, Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)CrossRef
90.
go back to reference S. Marchesini, C.M. McGilvery, J. Bailey, C. Petit, Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption. ACS Nano 11(10), 10003–10011 (2017)CrossRef S. Marchesini, C.M. McGilvery, J. Bailey, C. Petit, Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption. ACS Nano 11(10), 10003–10011 (2017)CrossRef
91.
go back to reference S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J. Mater. Chem. A 6(4), 1832–1839 (2018)CrossRef S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J. Mater. Chem. A 6(4), 1832–1839 (2018)CrossRef
92.
go back to reference R. Shankar, M. Sachs, L. Francàs, D. Lubert-Perquel, G. Kerherve, A. Regoutz et al., Porous boron nitride for combined CO2 capture and photoreduction. J. Mater. Chem. A 7(41), 23931–23940 (2019)CrossRef R. Shankar, M. Sachs, L. Francàs, D. Lubert-Perquel, G. Kerherve, A. Regoutz et al., Porous boron nitride for combined CO2 capture and photoreduction. J. Mater. Chem. A 7(41), 23931–23940 (2019)CrossRef
93.
go back to reference D. Wang, Y. Xue, C. Wang, J. Ji, Z. Zhou, C. Tang, Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers. J. Mater. Sci. 54(14), 10168–10178 (2019)CrossRef D. Wang, Y. Xue, C. Wang, J. Ji, Z. Zhou, C. Tang, Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers. J. Mater. Sci. 54(14), 10168–10178 (2019)CrossRef
94.
go back to reference J. Liang, Q. Song, J. Lin, G. Li, Y. Fang, Z. Guo et al., In Situ Cu-loaded porous boron nitride nanofiber as an efficient adsorbent for CO2 capture. ACS Sustain. Chem. Eng. 8(19), 7454–7462 (2020)CrossRef J. Liang, Q. Song, J. Lin, G. Li, Y. Fang, Z. Guo et al., In Situ Cu-loaded porous boron nitride nanofiber as an efficient adsorbent for CO2 capture. ACS Sustain. Chem. Eng. 8(19), 7454–7462 (2020)CrossRef
95.
go back to reference C. Yang, D. Liu, Y. Chen, C. Chen, J. Wang, Y. Fan et al., Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture. ACS Appl. Mater. Interfaces. 11(10), 10276–10282 (2019)CrossRef C. Yang, D. Liu, Y. Chen, C. Chen, J. Wang, Y. Fan et al., Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture. ACS Appl. Mater. Interfaces. 11(10), 10276–10282 (2019)CrossRef
96.
go back to reference N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-Promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3(10), 9897–9909 (2020)CrossRef N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-Promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3(10), 9897–9909 (2020)CrossRef
97.
go back to reference J. Zha, X. Zhang, Room-Temperature synthesis of two-dimensional metal-organic frameworks with controllable size and functionality for enhanced CO2 sorption. Cryst. Growth Des. 18(5), 3209–3214 (2018)CrossRef J. Zha, X. Zhang, Room-Temperature synthesis of two-dimensional metal-organic frameworks with controllable size and functionality for enhanced CO2 sorption. Cryst. Growth Des. 18(5), 3209–3214 (2018)CrossRef
98.
go back to reference S. Stanly, E.J. Jelmy, C.P.R. Nair, H. John, Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J. Environ. Chem. Eng. 7(5), 103344 (2019)CrossRef S. Stanly, E.J. Jelmy, C.P.R. Nair, H. John, Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J. Environ. Chem. Eng. 7(5), 103344 (2019)CrossRef
99.
go back to reference M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5(1), 56 (2021) M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5(1), 56 (2021)
100.
go back to reference A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, Graphene analogues of BN: novel synthesis and properties. ACS Nano 4(3), 1539–1544 (2010)CrossRef A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, Graphene analogues of BN: novel synthesis and properties. ACS Nano 4(3), 1539–1544 (2010)CrossRef
101.
go back to reference C. Yang, J. Wang, Y. Chen, D. Liu, S. Huang, W. Lei, One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption. Nanoscale 10(23), 10979–10985 (2018)CrossRef C. Yang, J. Wang, Y. Chen, D. Liu, S. Huang, W. Lei, One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption. Nanoscale 10(23), 10979–10985 (2018)CrossRef
102.
go back to reference Y. Li, L. Liu, H. Yu, Y. Zhao, J. Dai, Y. Zhong et al., Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Sci. Total Environ. 811, 151384 (2022)CrossRef Y. Li, L. Liu, H. Yu, Y. Zhao, J. Dai, Y. Zhong et al., Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Sci. Total Environ. 811, 151384 (2022)CrossRef
103.
go back to reference X. Zhang, S.Y. Teng, A.C.M. Loy, B.S. How, W.D. Leong, X. Tao, Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10(6), 1012 (2020)CrossRef X. Zhang, S.Y. Teng, A.C.M. Loy, B.S. How, W.D. Leong, X. Tao, Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10(6), 1012 (2020)CrossRef
104.
go back to reference N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving Controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces. 11(21), 19141–19155 (2019)CrossRef N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving Controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces. 11(21), 19141–19155 (2019)CrossRef
105.
go back to reference S. Pandey, E. Fosso-Kankeu, M.J. Spiro, F. Waanders, N. Kumar, S.S. Ray et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)CrossRef S. Pandey, E. Fosso-Kankeu, M.J. Spiro, F. Waanders, N. Kumar, S.S. Ray et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)CrossRef
106.
go back to reference N. Aguilar, S. Aparicio, Theoretical insights into CO2 adsorption by MoS2 nanomaterials. J. Phys. Chem. C 123(43), 26338–26350 (2019)CrossRef N. Aguilar, S. Aparicio, Theoretical insights into CO2 adsorption by MoS2 nanomaterials. J. Phys. Chem. C 123(43), 26338–26350 (2019)CrossRef
107.
go back to reference N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRef N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRef
108.
go back to reference L. Seravalli, M. Bosi, A review on chemical vapour deposition of two-dimensional MoS2 flakes. Materials 14(24), 7590 (2021)CrossRef L. Seravalli, M. Bosi, A review on chemical vapour deposition of two-dimensional MoS2 flakes. Materials 14(24), 7590 (2021)CrossRef
109.
go back to reference R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4(5), 4721–4734 (2021)CrossRef R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4(5), 4721–4734 (2021)CrossRef
110.
go back to reference A. Parviainen, K. Loukola-Ruskeeniemi, Environmental impact of mineralised black shales. Earth Sci. Rev. 192, 65–90 (2019)CrossRef A. Parviainen, K. Loukola-Ruskeeniemi, Environmental impact of mineralised black shales. Earth Sci. Rev. 192, 65–90 (2019)CrossRef
111.
go back to reference T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa et al., The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Petroleum Sci. Eng., 94–95,123–54 (2012) T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa et al., The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Petroleum Sci. Eng., 94–95,123–54 (2012)
112.
go back to reference Q. Sun, G. Qin, Y. Ma, W. Wang, P. Li, A. Du et al., Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale 9(1), 19–24 (2017)CrossRef Q. Sun, G. Qin, Y. Ma, W. Wang, P. Li, A. Du et al., Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale 9(1), 19–24 (2017)CrossRef
113.
go back to reference G. Shi, L. Yu, X. Ba, X. Zhang, J. Zhou, Y. Yu, Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Trans. 46(32), 10569–10577 (2017)CrossRef G. Shi, L. Yu, X. Ba, X. Zhang, J. Zhou, Y. Yu, Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Trans. 46(32), 10569–10577 (2017)CrossRef
114.
go back to reference F.M. Enujekwu, Y. Zhang, C.I. Ezeh, H. Zhao, M. Xu, E. Besley et al., N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Appl. Surf. Sci. 542, 148556 (2021)CrossRef F.M. Enujekwu, Y. Zhang, C.I. Ezeh, H. Zhao, M. Xu, E. Besley et al., N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Appl. Surf. Sci. 542, 148556 (2021)CrossRef
115.
go back to reference M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials. Carbon 132, 104–140 (2018)CrossRef M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials. Carbon 132, 104–140 (2018)CrossRef
116.
go back to reference S.S. Ray, R. Gusain, N. Kumar, Chapter ten—Two-dimensional carbon nanomaterials-based adsorbents, in Ray S.S., Gusain, R., Kumar, N. (eds.) Carbon Nanomaterial-Based Adsorbents for Water Purification: Elsevier; pp. 225–73 (2020) S.S. Ray, R. Gusain, N. Kumar, Chapter ten—Two-dimensional carbon nanomaterials-based adsorbents, in Ray S.S., Gusain, R., Kumar, N. (eds.) Carbon Nanomaterial-Based Adsorbents for Water Purification: Elsevier; pp. 225–73 (2020)
117.
go back to reference N. Mukwevho, N. Kumar, E. Fosso-Kankeu, F. Waanders, J.R. Bunt, R.S. Sinha, Visible light-excitable ZnO/2D graphitic-C3N4 heterostructure for the photodegradation of naphthalene. Desalin. Water Treat. 163, 286–296 (2019)CrossRef N. Mukwevho, N. Kumar, E. Fosso-Kankeu, F. Waanders, J.R. Bunt, R.S. Sinha, Visible light-excitable ZnO/2D graphitic-C3N4 heterostructure for the photodegradation of naphthalene. Desalin. Water Treat. 163, 286–296 (2019)CrossRef
118.
go back to reference H.-L. Peng, F.-Y. Zhong, J.-B. Zhang, J.-Y. Zhang, P.-K. Wu, K. Huang et al., Graphitic carbon nitride functionalized with polyethylenimine for highly effective capture of carbon dioxide. Ind. Eng. Chem. Res. 57(32), 11031–11038 (2018)CrossRef H.-L. Peng, F.-Y. Zhong, J.-B. Zhang, J.-Y. Zhang, P.-K. Wu, K. Huang et al., Graphitic carbon nitride functionalized with polyethylenimine for highly effective capture of carbon dioxide. Ind. Eng. Chem. Res. 57(32), 11031–11038 (2018)CrossRef
119.
go back to reference Z. Li, P. Liu, C. Ou, X. Dong, Porous metal-organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustain. Chem. Eng. 8(41), 15378–15404 (2020)CrossRef Z. Li, P. Liu, C. Ou, X. Dong, Porous metal-organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustain. Chem. Eng. 8(41), 15378–15404 (2020)CrossRef
120.
go back to reference W. Wang, Y. Yu, Y. Jin, X. Liu, M. Shang, X. Zheng et al., Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J. Nanobiotechnol. 20(1), 207 (2022)CrossRef W. Wang, Y. Yu, Y. Jin, X. Liu, M. Shang, X. Zheng et al., Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J. Nanobiotechnol. 20(1), 207 (2022)CrossRef
121.
go back to reference W. Fan, Y. Wang, Z. Xiao, Z. Huang, F. Dai, R. Wang et al., Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chin. Chem. Lett. 29(6), 865–868 (2018)CrossRef W. Fan, Y. Wang, Z. Xiao, Z. Huang, F. Dai, R. Wang et al., Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chin. Chem. Lett. 29(6), 865–868 (2018)CrossRef
122.
go back to reference S. Das, T. Ben, S. Qiu, V. Valtchev, Two-Dimensional COF–three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities. ACS Appl. Mater. Interfaces. 12(47), 52899–52907 (2020)CrossRef S. Das, T. Ben, S. Qiu, V. Valtchev, Two-Dimensional COF–three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities. ACS Appl. Mater. Interfaces. 12(47), 52899–52907 (2020)CrossRef
123.
go back to reference Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine et al., Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)CrossRef Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine et al., Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)CrossRef
124.
go back to reference Y.B. Apriliyanto, N. Darmawan, N. Faginas-Lago, A. Lombardi, Two-dimensional diamine-linked covalent organic frameworks for CO2/N2 capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22(44), 25918–25929 (2020)CrossRef Y.B. Apriliyanto, N. Darmawan, N. Faginas-Lago, A. Lombardi, Two-dimensional diamine-linked covalent organic frameworks for CO2/N2 capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22(44), 25918–25929 (2020)CrossRef
125.
go back to reference Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai, Q. Wang et al., Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539, 213–223 (2017)CrossRef Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai, Q. Wang et al., Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539, 213–223 (2017)CrossRef
126.
go back to reference N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, S. Besghaier, M. Chlendi, F.I. Franco Duro et al., CO2 adsorption of materials synthesized from clay minerals: a review. Minerals [Internet] 9(9) (2019) N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, S. Besghaier, M. Chlendi, F.I. Franco Duro et al., CO2 adsorption of materials synthesized from clay minerals: a review. Minerals [Internet] 9(9) (2019)
127.
go back to reference M. Atilhan, S. Atilhan, R. Ullah, B. Anaya, T. Cagin, C.T. Yavuz et al., High-pressure methane, carbon dioxide, and nitrogen adsorption on amine-impregnated porous montmorillonite nanoclays. J. Chem. Eng. Data 61(8), 2749–2760 (2016)CrossRef M. Atilhan, S. Atilhan, R. Ullah, B. Anaya, T. Cagin, C.T. Yavuz et al., High-pressure methane, carbon dioxide, and nitrogen adsorption on amine-impregnated porous montmorillonite nanoclays. J. Chem. Eng. Data 61(8), 2749–2760 (2016)CrossRef
128.
go back to reference X. Tan, H.A. Tahini, S.C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture. ACS Appl. Mater. Interfaces. 9(23), 19825–19830 (2017)CrossRef X. Tan, H.A. Tahini, S.C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture. ACS Appl. Mater. Interfaces. 9(23), 19825–19830 (2017)CrossRef
129.
go back to reference T. Liu, Y. Chen, M. Zhang, L. Yuan, C. Zhang, J. Wang et al., A first-principles study of gas molecule adsorption on borophene. AIP Adv. 7(12), 125007 (2017)CrossRef T. Liu, Y. Chen, M. Zhang, L. Yuan, C. Zhang, J. Wang et al., A first-principles study of gas molecule adsorption on borophene. AIP Adv. 7(12), 125007 (2017)CrossRef
130.
go back to reference T. Kaewmaraya, L. Ngamwongwan, P. Moontragoon, W. Jarernboon, D. Singh, R. Ahuja et al., Novel green phosphorene as a superior chemical gas sensing material. J. Hazard. Mater. 401, 123340 (2021)CrossRef T. Kaewmaraya, L. Ngamwongwan, P. Moontragoon, W. Jarernboon, D. Singh, R. Ahuja et al., Novel green phosphorene as a superior chemical gas sensing material. J. Hazard. Mater. 401, 123340 (2021)CrossRef
131.
go back to reference S. Zhou, M. Wang, S. Wei, S. Cao, Z. Wang, S. Liu et al., First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics. 16, 100301 (2021)CrossRef S. Zhou, M. Wang, S. Wei, S. Cao, Z. Wang, S. Liu et al., First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics. 16, 100301 (2021)CrossRef
Metadata
Title
Nano-engineered 2D Materials for CO2 Capture
Authors
Neeraj Kumar
Rashi Gusain
Suprakas Sinha Ray
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_14

Premium Partners