Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Nano-Micro Polymeric Structures with Antimicrobial Activity in Solution

Author : Juan Rodríguez-Hernández

Published in: Polymers against Microorganisms

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pioneer strategies to combat infectious diseases focused on the improvement of pharmacokinetics of the antibiotics by prolonging their blood circulation. These initial approaches permitted the antibiotic to reach difficult-to-target sites of infection and, as a consequence, to reduce dose frequency of antibiotics and more interestingly to reduce undesired rapid clearance of therapeutic agents. However, this strategy can only be accomplished in combination of the advancement of the appropriate techniques both in chemical synthesis and the understanding of macromolecular chemistry.
This chapter describes the alternatives to fabricate nanometer scale polymeric structures with antimicrobial properties. In particular, we will describe the different alternatives developed to produce efficient antimicrobial polymer nanostructures in solution.
Organic (based on polymers) or hybrid inorganic/organic nanostructures have peculiar properties that distinguish them from materials structured at the micro scale. In particular, their large surface area to volume ratio may enhance the interaction of the nanostructured material with a given microbe as a result of a larger number of functional sites. The most studied antimicrobial nanostructures in solution are nanoparticles and within nanoparticles those made of silver have been extensively explored.
Moreover, antimicrobial polymers and, in particular, the nanostructures resulting from the self-assembly processes in solution has been recently demonstrated to be of interest for different applications including animal and human health care. Of particular interest are those cases in which the polymers form self-assembled nanostructures with a large concentration of antimicrobial moieties. Moreover, these self-assembled structures are able to incorporate other additional antimicrobials such as silver nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv. 2011;8(9):1105–9.CrossRef Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv. 2011;8(9):1105–9.CrossRef
2.
go back to reference Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, Whittum-Hudson JA. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.CrossRef Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, Whittum-Hudson JA. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.CrossRef
3.
go back to reference Ghaffari S, Varshosaz J, Saadat A, Atyabi F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine. 2011;6:35–43. Ghaffari S, Varshosaz J, Saadat A, Atyabi F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine. 2011;6:35–43.
4.
go back to reference Shegokar R, Al Shaal L, Mitri K. Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci. 2011;14(1):100–16.CrossRef Shegokar R, Al Shaal L, Mitri K. Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci. 2011;14(1):100–16.CrossRef
5.
go back to reference Kumar G, Sharma S, Shafiq N, Pandhi P, Khuller GK, Malhotra S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011;18(1):65–73.CrossRef Kumar G, Sharma S, Shafiq N, Pandhi P, Khuller GK, Malhotra S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011;18(1):65–73.CrossRef
6.
go back to reference Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–45.CrossRef Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–45.CrossRef
7.
go back to reference Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang Y-Y. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–22.CrossRef Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang Y-Y. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–22.CrossRef
8.
go back to reference Chen J, Wang F, Liu Q, Du J. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun. 2014;50(93):14482–93.CrossRef Chen J, Wang F, Liu Q, Du J. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun. 2014;50(93):14482–93.CrossRef
9.
go back to reference Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8(6):1807–11.CrossRef Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8(6):1807–11.CrossRef
10.
go back to reference Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009;5(10):1148–56.CrossRef Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009;5(10):1148–56.CrossRef
11.
go back to reference Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.CrossRef Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.CrossRef
12.
go back to reference Chen CZS, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.CrossRef Chen CZS, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.CrossRef
13.
go back to reference Song A, Walker SG, Parker KA, Sampson NS. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol. 2011;6(6):590–9.CrossRef Song A, Walker SG, Parker KA, Sampson NS. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol. 2011;6(6):590–9.CrossRef
14.
go back to reference Carmona-Ribeiro A, de Melo Carrasco L. Cationic antimicrobial polymers and their assemblies. Int J Mol Sci. 2013;14(5):9906.CrossRef Carmona-Ribeiro A, de Melo Carrasco L. Cationic antimicrobial polymers and their assemblies. Int J Mol Sci. 2013;14(5):9906.CrossRef
15.
go back to reference Ilker MF, Schule H, Coughlin EB. Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: study of the lipid membrane disruption activities. Macromolecules. 2004;37(3):694–700.CrossRef Ilker MF, Schule H, Coughlin EB. Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: study of the lipid membrane disruption activities. Macromolecules. 2004;37(3):694–700.CrossRef
16.
go back to reference Ilker MF, Nüsslein K, Tew GN, Coughlin EB. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.CrossRef Ilker MF, Nüsslein K, Tew GN, Coughlin EB. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.CrossRef
17.
go back to reference Venkataraman S, Zhang Y, Liu L, Yang Y-Y. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials. 2010;31(7):1751–6.CrossRef Venkataraman S, Zhang Y, Liu L, Yang Y-Y. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials. 2010;31(7):1751–6.CrossRef
18.
go back to reference Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Acc Chem Res. 1996;29(2):95–102.CrossRef Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Acc Chem Res. 1996;29(2):95–102.CrossRef
19.
go back to reference Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–88.CrossRef Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–88.CrossRef
20.
go back to reference Israelachvili JN. Intermolecular and surface forces: with applications to colloidal and biological systems. London: Academic; 1985. Israelachvili JN. Intermolecular and surface forces: with applications to colloidal and biological systems. London: Academic; 1985.
21.
go back to reference Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules. 2011;12(10):3581–91.CrossRef Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules. 2011;12(10):3581–91.CrossRef
22.
go back to reference Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang Y-Y. Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials. 2012;33(4):1146–53.CrossRef Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang Y-Y. Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials. 2012;33(4):1146–53.CrossRef
23.
go back to reference Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang Y-Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011;3(5):409–14.CrossRef Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang Y-Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011;3(5):409–14.CrossRef
24.
go back to reference Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4(7):457–63.CrossRef Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4(7):457–63.CrossRef
25.
go back to reference Yao D, Guo Y, Chen S, Tang J, Chen Y. Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer. 2013;54(14):3485–91.CrossRef Yao D, Guo Y, Chen S, Tang J, Chen Y. Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer. 2013;54(14):3485–91.CrossRef
26.
go back to reference Sun Z, Li Y, Guan X, Chen L, Jing X, Xie Z. Rational design and synthesis of covalent organic polymers with hollow structure and excellent antibacterial efficacy. RSC Adv. 2014;4(76):40269–72.CrossRef Sun Z, Li Y, Guan X, Chen L, Jing X, Xie Z. Rational design and synthesis of covalent organic polymers with hollow structure and excellent antibacterial efficacy. RSC Adv. 2014;4(76):40269–72.CrossRef
27.
go back to reference Yadav S, Mahato M, Pathak R, Jha D, Kumar B, Deka SR, Gautam HK, Sharma AK. Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J Mater Chem B. 2014;2(30):4848–61.CrossRef Yadav S, Mahato M, Pathak R, Jha D, Kumar B, Deka SR, Gautam HK, Sharma AK. Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J Mater Chem B. 2014;2(30):4848–61.CrossRef
28.
go back to reference Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–8.CrossRef Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–8.CrossRef
29.
go back to reference Lu H, Fan L, Liu Q, Wei J, Ren T, Du J. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem. 2012;3(8):2217–27.CrossRef Lu H, Fan L, Liu Q, Wei J, Ren T, Du J. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem. 2012;3(8):2217–27.CrossRef
30.
go back to reference Xu J, Han X, Liu HL, Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf A Physicochem Eng Asp. 2006;273(1–3):179–83.CrossRef Xu J, Han X, Liu HL, Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf A Physicochem Eng Asp. 2006;273(1–3):179–83.CrossRef
31.
go back to reference Lu H, Yu L, Liu Q, Du J. Ultrafine silver nanoparticles with excellent antibacterial efficacy prepared by a handover of vesicle templating to micelle stabilization. Polym Chem. 2013;4(12):3448–52.CrossRef Lu H, Yu L, Liu Q, Du J. Ultrafine silver nanoparticles with excellent antibacterial efficacy prepared by a handover of vesicle templating to micelle stabilization. Polym Chem. 2013;4(12):3448–52.CrossRef
32.
go back to reference Zou K, Liu Q, Chen J, Du J. Silver-decorated biodegradable polymer vesicles with excellent antibacterial efficacy. Polym Chem. 2014;5(2):405–11.CrossRef Zou K, Liu Q, Chen J, Du J. Silver-decorated biodegradable polymer vesicles with excellent antibacterial efficacy. Polym Chem. 2014;5(2):405–11.CrossRef
33.
go back to reference Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388–401.CrossRef Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388–401.CrossRef
34.
go back to reference Morikawa M-A, Kim K, Kinoshita H, Yasui K, Kasai Y, Kimizuka N. Aqueous nanospheres self-assembled from hyperbranched polymers and silver ions: molecular inclusion and photoreduction characteristics. Macromolecules. 2010;43(21):8971–6.CrossRef Morikawa M-A, Kim K, Kinoshita H, Yasui K, Kasai Y, Kimizuka N. Aqueous nanospheres self-assembled from hyperbranched polymers and silver ions: molecular inclusion and photoreduction characteristics. Macromolecules. 2010;43(21):8971–6.CrossRef
35.
go back to reference Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules. 2013;14(4):1103–12.CrossRef Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules. 2013;14(4):1103–12.CrossRef
36.
go back to reference Song J, Jang J. Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv Colloid Interface Sci. 2014;203:37–50.CrossRef Song J, Jang J. Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv Colloid Interface Sci. 2014;203:37–50.CrossRef
37.
go back to reference de Azeredo HMC. Antimicrobial nanostructures in food packaging. Trends Food Sci Technol. 2013;30(1):56–69.CrossRef de Azeredo HMC. Antimicrobial nanostructures in food packaging. Trends Food Sci Technol. 2013;30(1):56–69.CrossRef
38.
go back to reference Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.CrossRef Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.CrossRef
39.
go back to reference Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem. 2005;53(10):3888–94.CrossRef Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem. 2005;53(10):3888–94.CrossRef
40.
go back to reference Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym. 2009;76(1):17–22.CrossRef Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym. 2009;76(1):17–22.CrossRef
41.
go back to reference Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–700.CrossRef Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–700.CrossRef
42.
go back to reference Natan M, Gutman O, Lavi R, Margel S, Banin E. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria. ACS Nano. 2015;9(2):1175–88.CrossRef Natan M, Gutman O, Lavi R, Margel S, Banin E. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria. ACS Nano. 2015;9(2):1175–88.CrossRef
43.
go back to reference Cai Q, Bao S, Zhao Y, Zhao T, Xiao L, Gao G, Chokto H, Dong A. Tailored synthesis of amine N-halamine copolymerized polystyrene with capability of killing bacteria. J Colloid Interface Sci. 2015;444:1–9.CrossRef Cai Q, Bao S, Zhao Y, Zhao T, Xiao L, Gao G, Chokto H, Dong A. Tailored synthesis of amine N-halamine copolymerized polystyrene with capability of killing bacteria. J Colloid Interface Sci. 2015;444:1–9.CrossRef
44.
go back to reference Song J, Kong H, Jang J. Enhanced antibacterial performance of cationic polymer modified silica nanoparticles. Chem Commun. 2009;36:5418–20.CrossRef Song J, Kong H, Jang J. Enhanced antibacterial performance of cationic polymer modified silica nanoparticles. Chem Commun. 2009;36:5418–20.CrossRef
45.
go back to reference Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V. Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol. 2007;7(9):2994–3010.CrossRef Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V. Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol. 2007;7(9):2994–3010.CrossRef
46.
go back to reference Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004;54(6):1019–24.CrossRef Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004;54(6):1019–24.CrossRef
47.
go back to reference Kong H, Song J, Jang J. Photocatalytic antibacterial capabilities of TiO2-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol. 2010;44(14):5672–6.CrossRef Kong H, Song J, Jang J. Photocatalytic antibacterial capabilities of TiO2-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol. 2010;44(14):5672–6.CrossRef
48.
go back to reference Zhang G, Liu Y, Morikawa H, Chen Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose. 2013;20(4):1877–84.CrossRef Zhang G, Liu Y, Morikawa H, Chen Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose. 2013;20(4):1877–84.CrossRef
49.
go back to reference Xu HY, Qu F, Xu H, Lai WH, Wang YA, Aguilar ZP, Wei H. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals. 2012;25(1):45–53.CrossRef Xu HY, Qu F, Xu H, Lai WH, Wang YA, Aguilar ZP, Wei H. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals. 2012;25(1):45–53.CrossRef
50.
go back to reference Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res. 2005;44(18):7098–104.CrossRef Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res. 2005;44(18):7098–104.CrossRef
51.
go back to reference Zhenping C, Xiulin Z, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization of 4-vinylpyridine and quaternization. Surf Rev Lett. 2006;13(2–3):313–8. Zhenping C, Xiulin Z, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization of 4-vinylpyridine and quaternization. Surf Rev Lett. 2006;13(2–3):313–8.
52.
go back to reference Ravindra S, Varaprasad K, Reddy NN, Vimala K, Raju KM. Biodegradable microspheres for controlled release of an antibiotic ciprofloxacin. J Polym Environ. 2011;19(2):413–8.CrossRef Ravindra S, Varaprasad K, Reddy NN, Vimala K, Raju KM. Biodegradable microspheres for controlled release of an antibiotic ciprofloxacin. J Polym Environ. 2011;19(2):413–8.CrossRef
53.
go back to reference Zheng J, Tian X, Sun Y, Lu D, Yang W. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int J Pharm. 2013;450(1–2):296–303.CrossRef Zheng J, Tian X, Sun Y, Lu D, Yang W. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int J Pharm. 2013;450(1–2):296–303.CrossRef
54.
go back to reference Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.CrossRef Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.CrossRef
55.
go back to reference Dizman B, Elasri MO, Mathias LJ. Synthesis and characterization of antibacterial and temperature responsive methacrylamide polymers. Macromolecules. 2006;39(17):5738–46.CrossRef Dizman B, Elasri MO, Mathias LJ. Synthesis and characterization of antibacterial and temperature responsive methacrylamide polymers. Macromolecules. 2006;39(17):5738–46.CrossRef
56.
go back to reference Chen B-K, Lo S-H, Lee S-F. Temperature responsive methacrylamide polymers with antibacterial activity. Chin J Polym Sci. 2010;28(4):607–13.CrossRef Chen B-K, Lo S-H, Lee S-F. Temperature responsive methacrylamide polymers with antibacterial activity. Chin J Polym Sci. 2010;28(4):607–13.CrossRef
57.
go back to reference Liu SJ, Qiao SL, Li LL, Qi GB, Lin YX, Qiao ZY, Wang H, Shao C. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26(49):12. Liu SJ, Qiao SL, Li LL, Qi GB, Lin YX, Qiao ZY, Wang H, Shao C. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26(49):12.
58.
go back to reference Feng LH, Zhu CL, Yuan HX, Liu LB, Lv FT, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev. 2013;42(16):6620–33.CrossRef Feng LH, Zhu CL, Yuan HX, Liu LB, Lv FT, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev. 2013;42(16):6620–33.CrossRef
59.
go back to reference Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir. 2012;28(4):2091–8.CrossRef Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir. 2012;28(4):2091–8.CrossRef
60.
go back to reference Xing C, Xu Q, Tang H, Liu L, Wang S. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–24.CrossRef Xing C, Xu Q, Tang H, Liu L, Wang S. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–24.CrossRef
61.
go back to reference Zhang C, Zhu Y, Zhou C, Yuan W, Du J. Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym Chem. 2013;4(2):255–9.CrossRef Zhang C, Zhu Y, Zhou C, Yuan W, Du J. Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym Chem. 2013;4(2):255–9.CrossRef
Metadata
Title
Nano-Micro Polymeric Structures with Antimicrobial Activity in Solution
Author
Juan Rodríguez-Hernández
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47961-3_4

Premium Partners