Skip to main content
Top
Published in: Journal of Materials Science 5/2019

20-11-2018 | Energy materials

Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries

Authors: Fanjun Kong, Linze Lv, Ying Gu, Shi Tao, Xuefan Jiang, Bin Qian, Lei Gao

Published in: Journal of Materials Science | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-performance transition metal selenides are considered as promising electrode materials in alkali-ion batteries. However, the poor conductivity limits their further application. Herein, FeSe2 nanoparticles anchored on reduced graphene oxide (FeSe2@rGO) hybrid composites are prepared by a simple hydrothermal method and designed as promising anodes for lithium/sodium-ion batteries. The as-prepared FeSe2@rGO hybrids exhibit superior electrochemical performance with large reversible capacity and excellent cycling stability. In particular, the FeSe2@rGO electrodes deliver a specific capacity of 945.8 mAh g−1 for LIBs and a reversible capacity of 468.8 mAh g−1 for SIBs after 100 cycles at a current density of 100 mA g−1. Besides, the FeSe2@rGO electrodes demonstrate impressed rate capability and high ion diffusion coefficient. The results could enrich electrode materials synthesis methodologies and understand the complex charge–discharge process of metal selenides for next-generation batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef
2.
go back to reference Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430CrossRef Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430CrossRef
3.
go back to reference Zhamu A, Chen GR, Liu CG, Neff D, Fang Q, Yu ZN, Xiong W, Wang YB, Wang XQ, Jang BZ (2012) Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ Sci 5:5701–5707CrossRef Zhamu A, Chen GR, Liu CG, Neff D, Fang Q, Yu ZN, Xiong W, Wang YB, Wang XQ, Jang BZ (2012) Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ Sci 5:5701–5707CrossRef
4.
go back to reference Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017CrossRef Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017CrossRef
5.
go back to reference Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448CrossRef Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448CrossRef
6.
go back to reference Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef
7.
go back to reference Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRef Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRef
8.
go back to reference Palomares V, Serras P, Villaluenga I, Hueso KB, Carreterogonzález J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRef Palomares V, Serras P, Villaluenga I, Hueso KB, Carreterogonzález J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRef
9.
go back to reference Wen Y, He K, Zhu YJ, Han FD, Xu YH, Matsuda I, Ishii Y, Cumings J, Wang CS (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRef Wen Y, He K, Zhu YJ, Han FD, Xu YH, Matsuda I, Ishii Y, Cumings J, Wang CS (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRef
10.
go back to reference Smith AJ, Burns JC, Zhao XM, Xiong DJ, Dahn JR (2011) A high precision coulometry study of the SEI growth in Li/graphite cells. J Electrochem Soc 158:A447–A452CrossRef Smith AJ, Burns JC, Zhao XM, Xiong DJ, Dahn JR (2011) A high precision coulometry study of the SEI growth in Li/graphite cells. J Electrochem Soc 158:A447–A452CrossRef
11.
go back to reference Kang E, Jung YS, Cavanagh AS, Kim GH, George SM, Dillon AC, Jin KK, Lee J (2011) Fe3O4 Nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21:2430–2438CrossRef Kang E, Jung YS, Cavanagh AS, Kim GH, George SM, Dillon AC, Jin KK, Lee J (2011) Fe3O4 Nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21:2430–2438CrossRef
12.
go back to reference Yan LT, Chen G, Sarker S, Richins S, Wang HQ, Xu WC, Rui XH, Luo HM (2016) Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl Mater Interface 8:22213–22219CrossRef Yan LT, Chen G, Sarker S, Richins S, Wang HQ, Xu WC, Rui XH, Luo HM (2016) Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl Mater Interface 8:22213–22219CrossRef
13.
go back to reference Xia L, Wang SQ, Liu GX, Ding LX, Li DD, Wang HH, Qiao SZ (2016) Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12:853–859CrossRef Xia L, Wang SQ, Liu GX, Ding LX, Li DD, Wang HH, Qiao SZ (2016) Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12:853–859CrossRef
14.
go back to reference Xu XJ, Liu J, Liu JW, Ouyang LZ, Hu RZ, Wang H, Yang LC, Zhu M (2018) A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv Funct Mater 28:1707573CrossRef Xu XJ, Liu J, Liu JW, Ouyang LZ, Hu RZ, Wang H, Yang LC, Zhu M (2018) A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv Funct Mater 28:1707573CrossRef
15.
go back to reference Li JB, Yan D, Lu T, Yao YF, Pan LK (2017) An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J 325:14–24CrossRef Li JB, Yan D, Lu T, Yao YF, Pan LK (2017) An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J 325:14–24CrossRef
16.
go back to reference Xiang T, Tao S, Xu WY, Fang Q, Wu CQ, Liu DB, Zhou Y, Khalil A, Muhammad Z, Chu WS, Wang ZH, Xiang HF, Liu Q, Song L (2017) Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode. ACS Nano 11:6483–6491CrossRef Xiang T, Tao S, Xu WY, Fang Q, Wu CQ, Liu DB, Zhou Y, Khalil A, Muhammad Z, Chu WS, Wang ZH, Xiang HF, Liu Q, Song L (2017) Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode. ACS Nano 11:6483–6491CrossRef
17.
go back to reference Wang H, Lan XZ, Jiang DL, Zhang Y, Zhong HH, Zhang ZP, Jiang Y (2015) Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J Power Sources 283:187–194CrossRef Wang H, Lan XZ, Jiang DL, Zhang Y, Zhong HH, Zhang ZP, Jiang Y (2015) Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J Power Sources 283:187–194CrossRef
18.
go back to reference Yue JL, Sun Q, Fu ZW (2013) Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries. Chem Commun 49:5868–5870CrossRef Yue JL, Sun Q, Fu ZW (2013) Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries. Chem Commun 49:5868–5870CrossRef
19.
go back to reference Han G, Chen ZG, Ye D, Yang L, Wang LZ, Drennan J, Zou J (2014) In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J Mater Chem A 2:7109–7116CrossRef Han G, Chen ZG, Ye D, Yang L, Wang LZ, Drennan J, Zou J (2014) In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J Mater Chem A 2:7109–7116CrossRef
20.
go back to reference Li N, Zhang Y, Zhao HY, Liu ZQ, Zhang XY, Du YP (2016) Synthesis of high-quality alpha-MnSe nanostructures with superior lithium storage properties. Inorg Chem 55:2765–2770CrossRef Li N, Zhang Y, Zhao HY, Liu ZQ, Zhang XY, Du YP (2016) Synthesis of high-quality alpha-MnSe nanostructures with superior lithium storage properties. Inorg Chem 55:2765–2770CrossRef
21.
go back to reference Park GD, Cho JS, Lee JK, Kang YC (2016) Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale kirkendall diffusion process. Sci Rep 6:22432CrossRef Park GD, Cho JS, Lee JK, Kang YC (2016) Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale kirkendall diffusion process. Sci Rep 6:22432CrossRef
22.
go back to reference Zhang K, Hu Z, Liu X, Tao ZL, Chen J (2015) FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv Mater 27:3305–3309CrossRef Zhang K, Hu Z, Liu X, Tao ZL, Chen J (2015) FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv Mater 27:3305–3309CrossRef
23.
go back to reference Wei XJ, Tang CJ, An QY, Yan MY, Wang XP, Hu P, Cai XY, Mai LQ (2017) FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res 10:3202–3211CrossRef Wei XJ, Tang CJ, An QY, Yan MY, Wang XP, Hu P, Cai XY, Mai LQ (2017) FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res 10:3202–3211CrossRef
24.
go back to reference Zhao FP, Shen SD, Cheng L, Ma L, Zhou JH, Ye HL, Han N, Wu TP, Li YG, Lu J (2017) Improved sodium-ion storage performance of ultrasmall iron selenide nanoparticles. Nano Lett 17:4137–4142CrossRef Zhao FP, Shen SD, Cheng L, Ma L, Zhou JH, Ye HL, Han N, Wu TP, Li YG, Lu J (2017) Improved sodium-ion storage performance of ultrasmall iron selenide nanoparticles. Nano Lett 17:4137–4142CrossRef
25.
go back to reference Kong FJ, Lv LZ, Wang J, Jiao GH, Tao S, Han ZD, Fang Y, Qian B, Jiang XF (2018) Graphite modified AlNbO4 with enhanced lithium-ion storage behaviors and its electrochemical mechanism. Mater Res Bull 97:405–410CrossRef Kong FJ, Lv LZ, Wang J, Jiao GH, Tao S, Han ZD, Fang Y, Qian B, Jiang XF (2018) Graphite modified AlNbO4 with enhanced lithium-ion storage behaviors and its electrochemical mechanism. Mater Res Bull 97:405–410CrossRef
26.
go back to reference Zhang ZA, Shi XD, Yang X (2016) Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta 208:238–243CrossRef Zhang ZA, Shi XD, Yang X (2016) Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta 208:238–243CrossRef
27.
go back to reference Zhang F, Xia C, Zhu JJ, Ahmed B, Liang HF, Velusamy DB, Schwingenschlögl U, Alshareef HN (2016) SnSe2 2D anodes for advanced sodium ion batteries. Adv Energy Mater 6:1601188CrossRef Zhang F, Xia C, Zhu JJ, Ahmed B, Liang HF, Velusamy DB, Schwingenschlögl U, Alshareef HN (2016) SnSe2 2D anodes for advanced sodium ion batteries. Adv Energy Mater 6:1601188CrossRef
28.
go back to reference Park GD, Kim JH, Kang YC (2016) Large-scale production of spherical FeSe2-amorphous carbon composite powders as anode materials for sodium-ion batteries. Mater Charact 120:349–356CrossRef Park GD, Kim JH, Kang YC (2016) Large-scale production of spherical FeSe2-amorphous carbon composite powders as anode materials for sodium-ion batteries. Mater Charact 120:349–356CrossRef
29.
go back to reference Cho JS, Lee JK, Kang YC (2016) Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries. Sci Rep 6:23699CrossRef Cho JS, Lee JK, Kang YC (2016) Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries. Sci Rep 6:23699CrossRef
30.
go back to reference Fan HS, Yu H, Zhang YF, Guo J, Wang Z, Wang H, Zhao N, Zheng Y, Du CF, Dai ZF, Yan QY, Xu J (2018) 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater 10:48–55CrossRef Fan HS, Yu H, Zhang YF, Guo J, Wang Z, Wang H, Zhao N, Zheng Y, Du CF, Dai ZF, Yan QY, Xu J (2018) 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater 10:48–55CrossRef
31.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
32.
go back to reference Shi WD, Zhang X, Che GB, Fan WQ, Liu CB (2013) Controlled hydrothermal synthesis and magnetic properties of three-dimensional FeSe2 rod clusters and microspheres. Chem Eng J 215–216:508–516CrossRef Shi WD, Zhang X, Che GB, Fan WQ, Liu CB (2013) Controlled hydrothermal synthesis and magnetic properties of three-dimensional FeSe2 rod clusters and microspheres. Chem Eng J 215–216:508–516CrossRef
33.
go back to reference Lu YH, Goodenough JB, Dathar GKP, Henkelman G, Wu J, Stevenson K (2011) Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites. Chem Mater 23:3210–3216CrossRef Lu YH, Goodenough JB, Dathar GKP, Henkelman G, Wu J, Stevenson K (2011) Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites. Chem Mater 23:3210–3216CrossRef
34.
go back to reference Li J, Jin ZG, Liu T, Wang J, Zheng XR, Lai JY (2014) Chemical synthesis of MSe2(M=Ni, Fe) particles by triethylene glycol solution process. CrystEngComm 16:6819–6822CrossRef Li J, Jin ZG, Liu T, Wang J, Zheng XR, Lai JY (2014) Chemical synthesis of MSe2(M=Ni, Fe) particles by triethylene glycol solution process. CrystEngComm 16:6819–6822CrossRef
35.
go back to reference Deng Z, Liu TT, Chen T, Jiang JX, Yang WL, Guo J, Zhao JQ, Wang HB, Gao LJ (2017) Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium ion batteries. ACS Appl Mater Interface 9:12469–12477CrossRef Deng Z, Liu TT, Chen T, Jiang JX, Yang WL, Guo J, Zhao JQ, Wang HB, Gao LJ (2017) Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium ion batteries. ACS Appl Mater Interface 9:12469–12477CrossRef
36.
go back to reference Taberna PL, Mitra S, Poizit P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573CrossRef Taberna PL, Mitra S, Poizit P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573CrossRef
37.
go back to reference Adelhelm P, Hu YS, Antonietti Maier J, Smarsly BM (2009) Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties. J Mater Chem 19:1616–1620CrossRef Adelhelm P, Hu YS, Antonietti Maier J, Smarsly BM (2009) Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties. J Mater Chem 19:1616–1620CrossRef
38.
go back to reference Li XW, Qiao L, Li D, Wang XH, Xie WH, He DY (2013) Three-dimensional network structured α-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J Mater Chem A 1:6400–6406CrossRef Li XW, Qiao L, Li D, Wang XH, Xie WH, He DY (2013) Three-dimensional network structured α-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J Mater Chem A 1:6400–6406CrossRef
39.
go back to reference Wang XY, Hao H, Liu JL, Huang T, Yu AS (2011) A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069CrossRef Wang XY, Hao H, Liu JL, Huang T, Yu AS (2011) A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069CrossRef
Metadata
Title
Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries
Authors
Fanjun Kong
Linze Lv
Ying Gu
Shi Tao
Xuefan Jiang
Bin Qian
Lei Gao
Publication date
20-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3143-1

Other articles of this Issue 5/2019

Journal of Materials Science 5/2019 Go to the issue

Premium Partners