Skip to main content
Top

2024 | OriginalPaper | Chapter

Nanocarbon for Flexible Energy Storage Devices

Authors : Anand Sreekantan Thampy, Naveena Princy M, Bhavana J I, Jacob G.

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to their extraordinary electrical, electrochemical, and mechanical capabilities, nanocarbon materials including graphene, carbon nanotubes, and carbon nanofibers have become budding candidates for the design of flexible energy storage devices. Energy storage devices are discussed based on highlighting the properties of nanocarbon materials. The application of nanocarbon materials in various flexible energy storage technologies, such as supercapacitors and batteries is the foremost subject of the sections. The electrochemical performance of flexible energy storage systems based on nanocarbons is also discussed in this chapter, including their specific capacitance, ionic conductivity, energy density, power density, and cyclic stability. The tuning of these performances of the energy devices is based on the methods and techniques involved in material synthesis and device fabrication. A huge number of accessible electroactive sites are made available by the high surface area and electrical conductivity of nanocarbon materials, which can store charge and boost the device's energy storage capacity. In order to improve the efficiency of the energy storage device, nanocarbon materials can also be utilized in the separator. Due to their exceptional mechanical strength, thermal stability, and ionic conductivity, graphene oxide (GO) and reduced graphene oxide (rGO) have been analyzed as possible materials for separators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schwartz, E.: Roll to Roll Processing for Flexible Electronics. Cornell University, 11 (2006) Schwartz, E.: Roll to Roll Processing for Flexible Electronics. Cornell University, 11 (2006)
2.
go back to reference Das, T., Sharma, B.K., Katiyar, A.K., Ahn, J.-H.: Graphene-based flexible and wearable electronics. J. Semicond.Semicond. 39(1), 011007 (2018)CrossRef Das, T., Sharma, B.K., Katiyar, A.K., Ahn, J.-H.: Graphene-based flexible and wearable electronics. J. Semicond.Semicond. 39(1), 011007 (2018)CrossRef
3.
go back to reference Zhu, S., Ni, J., Li, Y.: Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 13, 1825–1841 (2020)CrossRef Zhu, S., Ni, J., Li, Y.: Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 13, 1825–1841 (2020)CrossRef
4.
go back to reference Kanninen, P., Luong, N.D., Anoshkin, I.V., Tsapenko, A., Seppälä, J., Nasibulin, A.G., Kallio, T.: Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 27(23), 235403 (2016) Kanninen, P., Luong, N.D., Anoshkin, I.V., Tsapenko, A., Seppälä, J., Nasibulin, A.G., Kallio, T.: Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 27(23), 235403 (2016)
5.
go back to reference Yasin, M., Tauqeer, T., Rahman, H.U., Karimov, Kh.S., San, S.E., Tunc, A.V.: Polymer–fullerene bulk heterojunction-based strain-sensitive flexible organic field-effect transistor. Arab. J. Sci. Eng. 40, 257–262 (2015) Yasin, M., Tauqeer, T., Rahman, H.U., Karimov, Kh.S., San, S.E., Tunc, A.V.: Polymer–fullerene bulk heterojunction-based strain-sensitive flexible organic field-effect transistor. Arab. J. Sci. Eng. 40, 257–262 (2015)
6.
go back to reference Lee, K., Lee, H., Shin, Y., Yoon, Y., Kim, D., Lee, H.: Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 26, 746–754 (2016)CrossRef Lee, K., Lee, H., Shin, Y., Yoon, Y., Kim, D., Lee, H.: Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 26, 746–754 (2016)CrossRef
7.
go back to reference Sawangphruk, M., Suksomboon, M., Kongsupornsak, K., Khuntilo, J., Srimuk, P., Sanguansak, Y., Klunbud, P., Suktha, P., Chiochan, P.: High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J. Mater. Chem. A 1(34), 9630–9636 (2013)CrossRef Sawangphruk, M., Suksomboon, M., Kongsupornsak, K., Khuntilo, J., Srimuk, P., Sanguansak, Y., Klunbud, P., Suktha, P., Chiochan, P.: High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J. Mater. Chem. A 1(34), 9630–9636 (2013)CrossRef
8.
go back to reference Jost, K., Stenger, D., Perez, C.R., McDonough, J.K., Lian, K., Gogotsi, Y., Dion, G.: Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 6(9), 2698–2705 (2013)CrossRef Jost, K., Stenger, D., Perez, C.R., McDonough, J.K., Lian, K., Gogotsi, Y., Dion, G.: Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 6(9), 2698–2705 (2013)CrossRef
9.
go back to reference Kang, C., Baskaran, R., Hwang, J., Ku, B.C., Choi, W.: Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. Carbon 68, 493–500 (2014)CrossRef Kang, C., Baskaran, R., Hwang, J., Ku, B.C., Choi, W.: Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. Carbon 68, 493–500 (2014)CrossRef
10.
go back to reference Tan, R.K.L., Reeves, S.P., Hashemi, N., Thomas, D.G., Kavak, E., Montazami, R., Hashemi, N.N.: Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5(34), 17777–17803 (2017) Tan, R.K.L., Reeves, S.P., Hashemi, N., Thomas, D.G., Kavak, E., Montazami, R., Hashemi, N.N.: Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5(34), 17777–17803 (2017)
11.
go back to reference Lima, R.M.A.P., de Oliveira, H.P.: Carbon dots reinforced polypyrrole/graphene nanoplatelets on flexible eggshell membranes as electrodes of all-solid flexible supercapacitors. J. Energy Storage 28, 101284 (2020) Lima, R.M.A.P., de Oliveira, H.P.: Carbon dots reinforced polypyrrole/graphene nanoplatelets on flexible eggshell membranes as electrodes of all-solid flexible supercapacitors. J. Energy Storage 28, 101284 (2020)
12.
go back to reference Liu, L., Niu, Z., Chen, J.: Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett. 29(4), 571–581 (2018)CrossRef Liu, L., Niu, Z., Chen, J.: Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett. 29(4), 571–581 (2018)CrossRef
13.
go back to reference Badawi, N.M., Batoo, K.M., Ramesh, S., Ramesh, K., Imran, A.: SWCNTs/PEDOT: PSS coated cotton for wearable clothes and supercapacitor applications. Sustainability 15(1), 889 (2023) Badawi, N.M., Batoo, K.M., Ramesh, S., Ramesh, K., Imran, A.: SWCNTs/PEDOT: PSS coated cotton for wearable clothes and supercapacitor applications. Sustainability 15(1), 889 (2023)
14.
go back to reference Shokry, A., Karim, M., Khalil, M., Ebrahim, S., Nady, J.E.: Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Sci. Rep. 12(1), 11278 (2022) Shokry, A., Karim, M., Khalil, M., Ebrahim, S., Nady, J.E.: Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Sci. Rep. 12(1), 11278 (2022)
15.
go back to reference Li, Q., Tang, R., Zhou, H., Hu, X., Zhang, S.: A high-performance and flexible electrode film based on bacterial cellulose/polypyrrole/nitrogen-doped graphene for supercapacitors. Carbohyd. Polym.. Polym. 311, 120754 (2023)CrossRef Li, Q., Tang, R., Zhou, H., Hu, X., Zhang, S.: A high-performance and flexible electrode film based on bacterial cellulose/polypyrrole/nitrogen-doped graphene for supercapacitors. Carbohyd. Polym.. Polym. 311, 120754 (2023)CrossRef
16.
go back to reference Gilshtein, E., Flox, C., Ali, F.S.M., Mehrabimatin, B., Fedorov, F.S., Lin, S., Zhao, X., Nasibulin, A.G., Kallio, T.: Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. J. Energy Storage 30, 101505 (2020) Gilshtein, E., Flox, C., Ali, F.S.M., Mehrabimatin, B., Fedorov, F.S., Lin, S., Zhao, X., Nasibulin, A.G., Kallio, T.: Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. J. Energy Storage 30, 101505 (2020)
17.
go back to reference Abdel-Salam, A.I., Attia, S.Y., Mohamed, S.G., El-Hosiny, F.I., Sadek, M.A., Rashad, M.M.: Designing a hierarchical structure of nickel-cobalt-sulfide decorated on electrospun N-doped carbon nanofiber as an efficient electrode material for hybrid supercapacitors. Int. J. Hydrogen Energy 48(14), 5463–5477 (2023)CrossRef Abdel-Salam, A.I., Attia, S.Y., Mohamed, S.G., El-Hosiny, F.I., Sadek, M.A., Rashad, M.M.: Designing a hierarchical structure of nickel-cobalt-sulfide decorated on electrospun N-doped carbon nanofiber as an efficient electrode material for hybrid supercapacitors. Int. J. Hydrogen Energy 48(14), 5463–5477 (2023)CrossRef
18.
go back to reference Moreto, J.A., Silva, P.H.S., de Moraes Moura, G., da Silva, C.C., Ferreira, D.C., da Cunha, T.H.R., Silva, G.G., Rouxinol, F., de Siervo, A., Gelamo, R.V.: The effect of plasma treatment on flexible self-standing supercapacitors composed by carbon nanotubes and multilayer graphene composites. J. Mater. Sci. 57(19), 8779–8799 (2022) Moreto, J.A., Silva, P.H.S., de Moraes Moura, G., da Silva, C.C., Ferreira, D.C., da Cunha, T.H.R., Silva, G.G., Rouxinol, F., de Siervo, A., Gelamo, R.V.: The effect of plasma treatment on flexible self-standing supercapacitors composed by carbon nanotubes and multilayer graphene composites. J. Mater. Sci. 57(19), 8779–8799 (2022)
19.
go back to reference Zawar, S., Ali, G., Mustafa, G.M., Patil, S.A., Ramay, S.M., Atiq, S.: Mn0. 06Co2. 94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors. J. Energy Storage 50, 104298 (2022) Zawar, S., Ali, G., Mustafa, G.M., Patil, S.A., Ramay, S.M., Atiq, S.: Mn0. 06Co2. 94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors. J. Energy Storage 50, 104298 (2022)
20.
go back to reference Hsiao, C., Lee, C., Tai, N.: High retention supercapacitors using carbon nanomaterials/iron oxide/nickel-iron layered double hydroxides as electrodes. J. Energy Storage 46, 103805 (2022)CrossRef Hsiao, C., Lee, C., Tai, N.: High retention supercapacitors using carbon nanomaterials/iron oxide/nickel-iron layered double hydroxides as electrodes. J. Energy Storage 46, 103805 (2022)CrossRef
21.
go back to reference Ma, G., Li, J., Sun, K., Peng, H., Mu, J., Lei, Z.: High performance solid-state supercapacitor with PVA–KOH–K3 [Fe (CN) 6] gel polymer as electrolyte and separator. J. Power. Sources 256, 281–287 (2014)CrossRef Ma, G., Li, J., Sun, K., Peng, H., Mu, J., Lei, Z.: High performance solid-state supercapacitor with PVA–KOH–K3 [Fe (CN) 6] gel polymer as electrolyte and separator. J. Power. Sources 256, 281–287 (2014)CrossRef
22.
go back to reference Zhou, J., Cai, J., Cai, S., Zhou, X., Mansour, A.N.: Development of all-solid-state mediator-enhanced supercapacitors with polyvinylidene fluoride/lithium trifluoromethanesulfonate separators. J. Power. Sources 196(23), 10479–10483 (2011)CrossRef Zhou, J., Cai, J., Cai, S., Zhou, X., Mansour, A.N.: Development of all-solid-state mediator-enhanced supercapacitors with polyvinylidene fluoride/lithium trifluoromethanesulfonate separators. J. Power. Sources 196(23), 10479–10483 (2011)CrossRef
23.
go back to reference Yao, Q., Wang, H., Wang, C., Jin, C., Sun, Q.: One step construction of nitrogen–carbon derived from bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator. ACS Sustain. Chem. Eng. 6(4), 4695–4704 (2018)CrossRef Yao, Q., Wang, H., Wang, C., Jin, C., Sun, Q.: One step construction of nitrogen–carbon derived from bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator. ACS Sustain. Chem. Eng. 6(4), 4695–4704 (2018)CrossRef
24.
go back to reference Xu, D., Teng, G., Heng, Y., Chen, Z., Hu, D.: Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Mater. Chem. Phys. 249, 122979 (2020)CrossRef Xu, D., Teng, G., Heng, Y., Chen, Z., Hu, D.: Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Mater. Chem. Phys. 249, 122979 (2020)CrossRef
25.
go back to reference Teng, G., Lin, S., Xu, D., Heng, Y., Hu, D.: Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 31, 7916–7926 (2020)CrossRef Teng, G., Lin, S., Xu, D., Heng, Y., Hu, D.: Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 31, 7916–7926 (2020)CrossRef
26.
go back to reference Yang, P., Xie, J., Zhong, C.: Biowaste-derived three-dimensional porous network carbon and bioseparator for high-performance asymmetric supercapacitor. ACS Appl. Energy Mater. 1(2), 616–622 (2018)CrossRef Yang, P., Xie, J., Zhong, C.: Biowaste-derived three-dimensional porous network carbon and bioseparator for high-performance asymmetric supercapacitor. ACS Appl. Energy Mater. 1(2), 616–622 (2018)CrossRef
27.
go back to reference Zhao, D., Chen, C., Zhang, Q., Chen, W., Liu, S., Wang, Q., Liu, Y., Li, J., Yu, H.: High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7(18), 1700739 (2017)CrossRef Zhao, D., Chen, C., Zhang, Q., Chen, W., Liu, S., Wang, Q., Liu, Y., Li, J., Yu, H.: High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7(18), 1700739 (2017)CrossRef
28.
go back to reference Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., Volfkovich, Y., Shulga, N.Y., Skryleva, Y.N., Parkhomenko et al.: Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. J. Power Sources 279, 722–730 (2015) Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., Volfkovich, Y., Shulga, N.Y., Skryleva, Y.N., Parkhomenko et al.: Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. J. Power Sources 279, 722–730 (2015)
29.
go back to reference Nie, W., Zhang, S., Ding, X., Hu, J., Yang, X., Li, Q.: A novel cord-shaped supercapacitor with high stretchability. Text. Res. J. 89(19–20), 4265–4271 (2019)CrossRef Nie, W., Zhang, S., Ding, X., Hu, J., Yang, X., Li, Q.: A novel cord-shaped supercapacitor with high stretchability. Text. Res. J. 89(19–20), 4265–4271 (2019)CrossRef
30.
go back to reference Peng, H., Xiao, L., Sun, K., Ma, G., Wei, G., Lei, Z.: Preparation of a cheap and environmentally friendly separator by coaxial electrospinning toward suppressing self-discharge of supercapacitors. J. Power. Sources 435, 226800 (2019)CrossRef Peng, H., Xiao, L., Sun, K., Ma, G., Wei, G., Lei, Z.: Preparation of a cheap and environmentally friendly separator by coaxial electrospinning toward suppressing self-discharge of supercapacitors. J. Power. Sources 435, 226800 (2019)CrossRef
31.
go back to reference Hou, M., Xu, M., Hu, Y., Li, B.: Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta. Acta 313, 245–254 (2019)CrossRef Hou, M., Xu, M., Hu, Y., Li, B.: Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta. Acta 313, 245–254 (2019)CrossRef
32.
go back to reference Kwak, Y., Jun, H.Y., Kim, G., Ahn, H.J., Hwang, W.R., Ryu, G.H., Ryu, S.O., Kim, S.H., Brigljević, B., Ni, A., Lim, H.: Flow-assisted ultrasonic exfoliation enabling scalable and rapid graphene production for efficient inkjet-printable graphene ink. Ind. Eng. Chem. Res. (2023) Kwak, Y., Jun, H.Y., Kim, G., Ahn, H.J., Hwang, W.R., Ryu, G.H., Ryu, S.O., Kim, S.H., Brigljević, B., Ni, A., Lim, H.: Flow-assisted ultrasonic exfoliation enabling scalable and rapid graphene production for efficient inkjet-printable graphene ink. Ind. Eng. Chem. Res. (2023)
33.
go back to reference Zhang, X., Pei, Y., Tian, B., Wu, Y., Tang, G., Liu, Q., Liang, J., Wu, W.: Soft fully-printed rGO/Fe2O3-based supercapacitors for wearable electronics. J. Energy Storage. 10(56), 106136 (2022)CrossRef Zhang, X., Pei, Y., Tian, B., Wu, Y., Tang, G., Liu, Q., Liang, J., Wu, W.: Soft fully-printed rGO/Fe2O3-based supercapacitors for wearable electronics. J. Energy Storage. 10(56), 106136 (2022)CrossRef
34.
go back to reference Gholamalizadeh, N., Mazinani, S., Abdouss, M., Bazargan, A.M., Fatemi, F.: Stencil printing of a highly conductive graphene ink toward flexible electrochemical biosensors for glucose monitoring. Prog. Org. Coat. 172, 107083 (2022)CrossRef Gholamalizadeh, N., Mazinani, S., Abdouss, M., Bazargan, A.M., Fatemi, F.: Stencil printing of a highly conductive graphene ink toward flexible electrochemical biosensors for glucose monitoring. Prog. Org. Coat. 172, 107083 (2022)CrossRef
35.
go back to reference Htwe, Y.Z.N., Mariatti, M.: Surfactant-assisted water-based graphene conductive inks for flexible electronic applications. J. Taiwan Inst. Chem. Eng. 125, 402–412 (2021)CrossRef Htwe, Y.Z.N., Mariatti, M.: Surfactant-assisted water-based graphene conductive inks for flexible electronic applications. J. Taiwan Inst. Chem. Eng. 125, 402–412 (2021)CrossRef
36.
go back to reference Wang, H., Tran, D., Moussa, M., Stanley, N., Tung, T.T., Yu, L., Yap, P.L., Ding, F., Qian, J., Losic, D.: Improved preparation of MoS2/graphene composites and their inks for supercapacitors applications. Mater. Sci. Eng. B 262, 114700 (2020) Wang, H., Tran, D., Moussa, M., Stanley, N., Tung, T.T., Yu, L., Yap, P.L., Ding, F., Qian, J., Losic, D.: Improved preparation of MoS2/graphene composites and their inks for supercapacitors applications. Mater. Sci. Eng. B 262, 114700 (2020)
37.
go back to reference Xiao, H., Wu, Z.S., Chen, L., Zhou, F., Zheng, S., Ren, W., Cheng, H.-M., Bao, X.: One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11(7), 7284–7292 (2017)CrossRefPubMed Xiao, H., Wu, Z.S., Chen, L., Zhou, F., Zheng, S., Ren, W., Cheng, H.-M., Bao, X.: One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11(7), 7284–7292 (2017)CrossRefPubMed
38.
go back to reference Zheng, S., Tang, X., Wu, Z.S., Tan, Y.-Z., Wang, S., Sun, C., Cheng, H.-M., Bao, X.: Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration. ACS Nano 11(2), 2171–2179 (2017)CrossRefPubMed Zheng, S., Tang, X., Wu, Z.S., Tan, Y.-Z., Wang, S., Sun, C., Cheng, H.-M., Bao, X.: Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration. ACS Nano 11(2), 2171–2179 (2017)CrossRefPubMed
39.
go back to reference Liu, H., Liu, L., Yi, M., Shen, Z., Liang, S., Zhang, X., Ma, S.: Liquid-exfoliated MoS2 nanosheets/graphene composites with high capacity and excellent cycle stability for lithium-ion batteries. Chem. Eng. J. 311, 293–301 (2017)CrossRef Liu, H., Liu, L., Yi, M., Shen, Z., Liang, S., Zhang, X., Ma, S.: Liquid-exfoliated MoS2 nanosheets/graphene composites with high capacity and excellent cycle stability for lithium-ion batteries. Chem. Eng. J. 311, 293–301 (2017)CrossRef
40.
go back to reference Chang, Q., Li, L., Sai, L., Shi, W., Huang, L.: Water-soluble hybrid graphene ink for gravure-printed planar supercapacitors. Adv. Electr. Mater. 4(8), 1800059 (2018)CrossRef Chang, Q., Li, L., Sai, L., Shi, W., Huang, L.: Water-soluble hybrid graphene ink for gravure-printed planar supercapacitors. Adv. Electr. Mater. 4(8), 1800059 (2018)CrossRef
41.
go back to reference Xu, T., Yang, D., Fan, Z., Li, X., Liu, Y., Guo, C., Zhang, M., Yu, Z.Z.: Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 152, 134–143 (2019)CrossRef Xu, T., Yang, D., Fan, Z., Li, X., Liu, Y., Guo, C., Zhang, M., Yu, Z.Z.: Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 152, 134–143 (2019)CrossRef
42.
go back to reference Hou, X., Peng, T., Cheng, J., Yu, Q., Luo, R., Lu, Y., Liu, X., Kim, J.-K., He, J., Luo, Y.: Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10, 2570–2583 (2017)CrossRef Hou, X., Peng, T., Cheng, J., Yu, Q., Luo, R., Lu, Y., Liu, X., Kim, J.-K., He, J., Luo, Y.: Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10, 2570–2583 (2017)CrossRef
43.
go back to reference Su, S., Lai, L., Li, R., Lin, Y., Dai, H., Zhu, X.: Annealing-assisted dip-coating synthesis of ultrafine Fe3O4 nanoparticles/graphene on carbon cloth for flexible quasi-solid-state symmetric supercapacitors. ACS Appl. Energy Mater. 3(9), 9379–9389 (2020)CrossRef Su, S., Lai, L., Li, R., Lin, Y., Dai, H., Zhu, X.: Annealing-assisted dip-coating synthesis of ultrafine Fe3O4 nanoparticles/graphene on carbon cloth for flexible quasi-solid-state symmetric supercapacitors. ACS Appl. Energy Mater. 3(9), 9379–9389 (2020)CrossRef
44.
go back to reference Li, K., Liu, X., Chen, S., Pan, W., Zhang, J.: A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J. Energy Chem. 32, 166–173 (2019)CrossRef Li, K., Liu, X., Chen, S., Pan, W., Zhang, J.: A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J. Energy Chem. 32, 166–173 (2019)CrossRef
45.
go back to reference Li, K., Huang, Y., Liu, J., Sarfraz, M., Agboola, P.O., Shakir, I., Xu, Y.: A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. J. Mater. Chem. A 6(4), 1802–1808 (2018) Li, K., Huang, Y., Liu, J., Sarfraz, M., Agboola, P.O., Shakir, I., Xu, Y.: A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. J. Mater. Chem. A 6(4), 1802–1808 (2018)
46.
go back to reference Moon, I.K., Ki, B., Oh, J.: Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT: PSS/graphene electrode. Chem. Eng. J. 392, 123794 (2020) Moon, I.K., Ki, B., Oh, J.: Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT: PSS/graphene electrode. Chem. Eng. J. 392, 123794 (2020)
47.
go back to reference Shi, H., Niu, S., Lv, W., Zhou, G., Zhang, C., Sun, Z., Li, F., Kang, F., Yang, Q.-H.: Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon 138, 18–25 (2018)CrossRef Shi, H., Niu, S., Lv, W., Zhou, G., Zhang, C., Sun, Z., Li, F., Kang, F., Yang, Q.-H.: Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon 138, 18–25 (2018)CrossRef
48.
go back to reference Xin, S., Guo, Y.-G., Wan, L.-J.: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45(10), 1759–1769 (2012)CrossRefPubMed Xin, S., Guo, Y.-G., Wan, L.-J.: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45(10), 1759–1769 (2012)CrossRefPubMed
49.
go back to reference Tucek, J., Kemp, K.C., Kim, K.S., Zboril, R.: Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8), 7571–7612 (2014) Tucek, J., Kemp, K.C., Kim, K.S., Zboril, R.: Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8), 7571–7612 (2014)
Metadata
Title
Nanocarbon for Flexible Energy Storage Devices
Authors
Anand Sreekantan Thampy
Naveena Princy M
Bhavana J I
Jacob G.
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_17