Skip to main content
Top

2024 | OriginalPaper | Chapter

Nanocarbon for Lithium-Sulfur Batteries

Authors : Eshaan Bajpai, Felipe M. de Souza, Ram K. Gupta

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-sulfur batteries (LSB) are a highly regarded field of study within the energy storage field due to their potential to surpass the status-quo lithium-ion batteries (LIB) by delivering much higher theoretical energy densities. The implementation of this technology can lead to the improvement of the overall efficiency of current energy storage devices while adding an eco-friendly and economical aspect due to the abundance and low toxicity of sulfur. This chapter provides a general scope on the use of carbon nanomaterials in LSB. For that, the introduction described some of the current challenges associated with this technology and the importance of incorporating carbon-based nanomaterials to solve some of the challenges. The second section describes some of the synthetical approaches that are currently used to obtain different types of carbon nanomaterials followed by a description of the characterization methods. The third section provides a more theoretical discussion of the main property-structure relationships of carbon-based nanomaterials. Furthermore, the fourth section describes the main uses of carbon-based nanomaterials in LSB based on recent examples from the literature, while providing a discussion about the main aspects that influence the overall electrochemical properties of the fabricated devices. Lastly, a conclusion and future perspectives of the field are presented displaying the main challenges and the current hindrances that prevent the use of LSB in the market. This chapter aims to provide an overview of the main advantages and challenges related to LSB technology and possibly provide some insight to the young scientific community to engage in this promising field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fodstad, M., Crespo del Granado, P., Hellemo, L., Knudsen, B.R., Pisciella, P., Silvast, A., Bordin, C., Schmidt, S., Straus, J.: Next frontiers in energy system modelling: a review on challenges and the state of the art. Renew. Sustain. Energy Rev. 160, 112246 (2022)CrossRef Fodstad, M., Crespo del Granado, P., Hellemo, L., Knudsen, B.R., Pisciella, P., Silvast, A., Bordin, C., Schmidt, S., Straus, J.: Next frontiers in energy system modelling: a review on challenges and the state of the art. Renew. Sustain. Energy Rev. 160, 112246 (2022)CrossRef
2.
go back to reference Li, B., Xu, H., Ma, Y., Yang, S.: Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons. 4, 77–98 (2019)CrossRefPubMed Li, B., Xu, H., Ma, Y., Yang, S.: Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons. 4, 77–98 (2019)CrossRefPubMed
3.
go back to reference Mikhaylik, Y.V., Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004)CrossRef Mikhaylik, Y.V., Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004)CrossRef
4.
go back to reference Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y., Dai, H.: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)CrossRefPubMed Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y., Dai, H.: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)CrossRefPubMed
5.
go back to reference Du, M., Tian, X., Ran, R., Zhou, W., Liao, K., Shao, Z.: Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 34, 11557–11564 (2020)CrossRef Du, M., Tian, X., Ran, R., Zhou, W., Liao, K., Shao, Z.: Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 34, 11557–11564 (2020)CrossRef
6.
go back to reference Bai, S., Liu, X., Zhu, K., Wu, S., Zhou, H.: Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016)CrossRef Bai, S., Liu, X., Zhu, K., Wu, S., Zhou, H.: Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016)CrossRef
7.
go back to reference Li, M., Wan, Y., Huang, J.-K., Assen, A.H., Hsiung, C.-E., Jiang, H., Han, Y., Eddaoudi, M., Lai, Z., Ming, J., Li, L.-J.: Metal-organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2, 2362–2367 (2017)CrossRef Li, M., Wan, Y., Huang, J.-K., Assen, A.H., Hsiung, C.-E., Jiang, H., Han, Y., Eddaoudi, M., Lai, Z., Ming, J., Li, L.-J.: Metal-organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2, 2362–2367 (2017)CrossRef
8.
go back to reference Li, M., Wahyudi, W., Kumar, P., Wu, F., Yang, X., Li, H., Li, L.-J., Ming, J.: Scalable approach to construct free-standing and flexible carbon networks for lithium-sulfur battery. ACS Appl. Mater. Interfaces 9, 8047–8054 (2017)CrossRefPubMed Li, M., Wahyudi, W., Kumar, P., Wu, F., Yang, X., Li, H., Li, L.-J., Ming, J.: Scalable approach to construct free-standing and flexible carbon networks for lithium-sulfur battery. ACS Appl. Mater. Interfaces 9, 8047–8054 (2017)CrossRefPubMed
9.
go back to reference Wang, M.-Y., Han, S.-H., Niu, C.-Q., Chao, Z.-S., Luo, W.-B., Jin, H.-G., Yi, W.-J., Fan, Z.-Q., Fan, J.-C.: Perovskite lithium lanthanum titanate-modified separator as both adsorbent and converter of soluble polysulfides toward high-performance Li-S battery. ACS Sustain. Chem. Eng. 8, 16477–16492 (2020)CrossRef Wang, M.-Y., Han, S.-H., Niu, C.-Q., Chao, Z.-S., Luo, W.-B., Jin, H.-G., Yi, W.-J., Fan, Z.-Q., Fan, J.-C.: Perovskite lithium lanthanum titanate-modified separator as both adsorbent and converter of soluble polysulfides toward high-performance Li-S battery. ACS Sustain. Chem. Eng. 8, 16477–16492 (2020)CrossRef
10.
go back to reference Yang, M., Li, Z., Chen, W., Hu, Y., Yan, Y.: Carbon-intercalated montmorillonite as efficient polysulfide mediator for enhancing the performance of lithium-sulfur batteries. Energy Fuels 34, 8947–8955 (2020)CrossRef Yang, M., Li, Z., Chen, W., Hu, Y., Yan, Y.: Carbon-intercalated montmorillonite as efficient polysulfide mediator for enhancing the performance of lithium-sulfur batteries. Energy Fuels 34, 8947–8955 (2020)CrossRef
11.
go back to reference Liu, G., Sun, Q., Li, Q., Zhang, J., Ming, J.: Electrolyte issues in lithium-sulfur batteries: development, prospect, and challenges. Energy Fuels 35, 10405–10427 (2021)CrossRef Liu, G., Sun, Q., Li, Q., Zhang, J., Ming, J.: Electrolyte issues in lithium-sulfur batteries: development, prospect, and challenges. Energy Fuels 35, 10405–10427 (2021)CrossRef
12.
go back to reference Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013)CrossRef Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013)CrossRef
13.
go back to reference Lim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M.: Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—a review. J. Ind. Eng. Chem. 66, 29–44 (2018)CrossRef Lim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M.: Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—a review. J. Ind. Eng. Chem. 66, 29–44 (2018)CrossRef
14.
go back to reference Kumar, N., Salehiyan, R., Chauke, V., Joseph Botlhoko, O., Setshedi, K., Scriba, M., Masukume, M., Sinha Ray, S.: Top-down synthesis of graphene: a comprehensive review. FlatChem 27, 100224 (2021) Kumar, N., Salehiyan, R., Chauke, V., Joseph Botlhoko, O., Setshedi, K., Scriba, M., Masukume, M., Sinha Ray, S.: Top-down synthesis of graphene: a comprehensive review. FlatChem 27, 100224 (2021)
15.
go back to reference Cushing, G.W., Johánek, V., Navin, J.K., Harrison, I.: Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C 119, 4759–4768 (2015)CrossRef Cushing, G.W., Johánek, V., Navin, J.K., Harrison, I.: Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C 119, 4759–4768 (2015)CrossRef
16.
go back to reference Mukanova, A., Tussupbayev, R., Sabitov, A., Bondarenko, I., Nemkaeva, R., Aldamzharov, B., Bakenov, Z.: CVD graphene growth on a surface of liquid gallium. Mater. Today Proc. 4, 4548–4554 (2017)CrossRef Mukanova, A., Tussupbayev, R., Sabitov, A., Bondarenko, I., Nemkaeva, R., Aldamzharov, B., Bakenov, Z.: CVD graphene growth on a surface of liquid gallium. Mater. Today Proc. 4, 4548–4554 (2017)CrossRef
17.
go back to reference Rümmeli, M.H., Bachmatiuk, A., Scott, A., Börrnert, F., Warner, J.H., Hoffman, V., Lin, J.-H., Cuniberti, G., Büchner, B.: Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206–4210 (2010)CrossRefPubMed Rümmeli, M.H., Bachmatiuk, A., Scott, A., Börrnert, F., Warner, J.H., Hoffman, V., Lin, J.-H., Cuniberti, G., Büchner, B.: Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206–4210 (2010)CrossRefPubMed
18.
go back to reference Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80-. ). 324, 1312–1314 (2009) Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80-. ). 324, 1312–1314 (2009)
19.
go back to reference Tang, L., Tan, J., Nong, H., Liu, B., Cheng, H.-M.: Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism, accounts. Mater. Res. 2, 36–47 (2021) Tang, L., Tan, J., Nong, H., Liu, B., Cheng, H.-M.: Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism, accounts. Mater. Res. 2, 36–47 (2021)
20.
go back to reference Arora, N., Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014)CrossRef Arora, N., Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014)CrossRef
21.
go back to reference Choudhary, V., Singh, B.P., Mathur, R.B., Carbon nanotubes and their composites. In: Suzuki, S. (Ed.), IntechOpen, Rijeka, p. Ch. 9 (2013) Choudhary, V., Singh, B.P., Mathur, R.B., Carbon nanotubes and their composites. In: Suzuki, S. (Ed.), IntechOpen, Rijeka, p. Ch. 9 (2013)
22.
go back to reference Chen, K., Chou, W., Liu, L., Cui, Y., Xue, P., Jia, M.: Electrochemical sensors fabricated by electrospinning technology: an overview. Sensors 19 (2019) Chen, K., Chou, W., Liu, L., Cui, Y., Xue, P., Jia, M.: Electrochemical sensors fabricated by electrospinning technology: an overview. Sensors 19 (2019)
23.
go back to reference Zhang, B., Kang, F., Tarascon, J.-M., Kim, J.-K.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016)CrossRef Zhang, B., Kang, F., Tarascon, J.-M., Kim, J.-K.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016)CrossRef
24.
go back to reference Xu, Z.-L., Kim, J.-K., Kang, K.: Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19, 84–107 (2018)CrossRef Xu, Z.-L., Kim, J.-K., Kang, K.: Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19, 84–107 (2018)CrossRef
25.
go back to reference Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006)CrossRef Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006)CrossRef
26.
go back to reference Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefPubMed Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefPubMed
27.
go back to reference Kang, H.-J., Bari, G.A.K.M.R., Lee, T.-G., Khan, T.T., Park, J.-W., Hwang, H.J., Cho, S.Y., Jun, Y.-S.: Microporous carbon nanoparticles for lithium–sulfur batteries. Nanomaterials 10 (2020) Kang, H.-J., Bari, G.A.K.M.R., Lee, T.-G., Khan, T.T., Park, J.-W., Hwang, H.J., Cho, S.Y., Jun, Y.-S.: Microporous carbon nanoparticles for lithium–sulfur batteries. Nanomaterials 10 (2020)
28.
go back to reference Yu, C.-H., Yen, Y.-J., Chung, S.-H.: Nanoporosity of carbon–sulfur nanocomposites toward the lithium–sulfur battery electrochemistry. Nanomaterials 11 (2021) Yu, C.-H., Yen, Y.-J., Chung, S.-H.: Nanoporosity of carbon–sulfur nanocomposites toward the lithium–sulfur battery electrochemistry. Nanomaterials 11 (2021)
29.
go back to reference Su, Y.-S., Fu, Y., Manthiram, A.: Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Phys. Chem. Chem. Phys. 14, 14495–14499 (2012)CrossRefPubMed Su, Y.-S., Fu, Y., Manthiram, A.: Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Phys. Chem. Chem. Phys. 14, 14495–14499 (2012)CrossRefPubMed
30.
go back to reference Ji, X., Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010)CrossRef Ji, X., Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010)CrossRef
31.
go back to reference Xu, Y.-W., Zhang, B.-H., Li, G.-R., Liu, S., Gao, X.-P.: Covalently bonded sulfur anchored with thiol-modified carbon nanotube as a cathode material for lithium-sulfur batteries. ACS Appl. Energy Mater. 3, 487–494 (2020)CrossRef Xu, Y.-W., Zhang, B.-H., Li, G.-R., Liu, S., Gao, X.-P.: Covalently bonded sulfur anchored with thiol-modified carbon nanotube as a cathode material for lithium-sulfur batteries. ACS Appl. Energy Mater. 3, 487–494 (2020)CrossRef
32.
go back to reference Yang, T., Xia, J., Piao, Z., Yang, L., Zhang, S., Xing, Y., Zhou, G.: Graphene-based materials for flexible lithium-sulfur batteries. ACS Nano 15, 13901–13923 (2021)CrossRefPubMed Yang, T., Xia, J., Piao, Z., Yang, L., Zhang, S., Xing, Y., Zhou, G.: Graphene-based materials for flexible lithium-sulfur batteries. ACS Nano 15, 13901–13923 (2021)CrossRefPubMed
33.
go back to reference Raulo, A., Gupta, A., Srivastava, R., Nandan, B.: Excellent electrochemical performance of Lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks. J. Electroanal. Chem. 880, 114829 (2021)CrossRef Raulo, A., Gupta, A., Srivastava, R., Nandan, B.: Excellent electrochemical performance of Lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks. J. Electroanal. Chem. 880, 114829 (2021)CrossRef
34.
go back to reference Yin, L.-C., Liang, J., Zhou, G.-M., Li, F., Saito, R., Cheng, H.-M.: Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)CrossRef Yin, L.-C., Liang, J., Zhou, G.-M., Li, F., Saito, R., Cheng, H.-M.: Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)CrossRef
35.
go back to reference Sun, F., Wang, J., Chen, H., Li, W., Qiao, W., Long, D., Ling, L.: High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl. Mater. Interfaces 5, 5630–5638 (2013)CrossRefPubMed Sun, F., Wang, J., Chen, H., Li, W., Qiao, W., Long, D., Ling, L.: High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl. Mater. Interfaces 5, 5630–5638 (2013)CrossRefPubMed
36.
go back to reference Spyrou, A.V., Tantis, I., Baikousi, M., Bourlinos, A.B., Salmas, C.E., Zboril, R., Karakassides, M.A.: The use of activated bio-carbon derived from “Posidonia oceanica” sea-waste for Lithium-Sulfur batteries development. Sustain. Energy Technol. Assessments. 53, 102748 (2022)CrossRef Spyrou, A.V., Tantis, I., Baikousi, M., Bourlinos, A.B., Salmas, C.E., Zboril, R., Karakassides, M.A.: The use of activated bio-carbon derived from “Posidonia oceanica” sea-waste for Lithium-Sulfur batteries development. Sustain. Energy Technol. Assessments. 53, 102748 (2022)CrossRef
37.
go back to reference Han, H., Niu, S., Zhao, Y., Tan, T., Zhang, Y.: TiO2/porous carbon composite-decorated separators for lithium/sulfur battery. Nanoscale Res. Lett. 14, 176 (2019)CrossRefPubMedPubMedCentral Han, H., Niu, S., Zhao, Y., Tan, T., Zhang, Y.: TiO2/porous carbon composite-decorated separators for lithium/sulfur battery. Nanoscale Res. Lett. 14, 176 (2019)CrossRefPubMedPubMedCentral
Metadata
Title
Nanocarbon for Lithium-Sulfur Batteries
Authors
Eshaan Bajpai
Felipe M. de Souza
Ram K. Gupta
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_9