Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

4. Nanocomposites as Tunable Optical Materials

Abstract

In the previous chapter, I have shown that nanocomposites can be used as bulk optical materials. However, this is only possible in the homogeneous regime, which, for applications in the visible spectral range, is reached for particle sizes below 4 nm. The main degrees of freedom that remain available for the design of optical nanocomposites are hence only the constituent materials (host and nanoparticles) and their respective volume fractions. Therefore, the key question is whether significant benefits over conventional materials can be achieved with these degrees of freedom. To answer this question, I, in this chapter, investigate what range of optical properties can be achieved with nanocomposites in the homogeneous regime. Since I have already shown that the Maxwell-Garnett-Mie effective medium theory (EMT) is an accurate tool for the design of nanocomposites in the homogeneous regime, I first use this EMT to investigate the general potential of optical nanocomposites for a wide range of different materials. Subsequently, I present experimental data for specific materials and optical components to confirm these general findings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019)
2.
go back to reference K. Weber, D. Werdehausen, P. Koenig, S. Thiele, M. Schmid, M. Decker, P.W. De Oliveira, A. Herkommer, H. Giessen, Tailored nanocomposites for 3D printed micro-optics. Opt. Mater. Exp. 10(10), 2345 ((in press)) K. Weber, D. Werdehausen, P. Koenig, S. Thiele, M. Schmid, M. Decker, P.W. De Oliveira, A. Herkommer, H. Giessen, Tailored nanocomposites for 3D printed micro-optics. Opt. Mater. Exp. 10(10), 2345 ((in press))
3.
go back to reference N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009)
4.
go back to reference N. Sultanova, S. Kasarova, I. Nikolov, Application of optical polymers in lens design, in AIP Conference Proceedings, vol. 1722.1 (2016), p. 230003 N. Sultanova, S. Kasarova, I. Nikolov, Application of optical polymers in lens design, in AIP Conference Proceedings, vol. 1722.1 (2016), p. 230003
5.
go back to reference N. Sultanova, S. Kasarova, I. Nikolov, Advanced applications of optical polymers. Bulgarian J. Phys. 43(3), 243–250 (2016) N. Sultanova, S. Kasarova, I. Nikolov, Advanced applications of optical polymers. Bulgarian J. Phys. 43(3), 243–250 (2016)
6.
go back to reference P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010)
7.
go back to reference H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005) CrossRef H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005) CrossRef
8.
go back to reference P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011) CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011) CrossRef
9.
go back to reference V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016) CrossRef V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016) CrossRef
10.
go back to reference T. Gissibl, S. Wagner, J. Sykora, M. Schmid, H. Giessen, Refractive index measurements of photo-resists for three-dimensional direct laser writing. Opt. Mater. Exp. 7(7), 2293–2298 (2017) CrossRef T. Gissibl, S. Wagner, J. Sykora, M. Schmid, H. Giessen, Refractive index measurements of photo-resists for three-dimensional direct laser writing. Opt. Mater. Exp. 7(7), 2293–2298 (2017) CrossRef
11.
go back to reference T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10(8), 554 (2016) T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10(8), 554 (2016)
12.
go back to reference S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, A.M. Herkommer, 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci. Adv. 3(2), e1602655 (2017) S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, A.M. Herkommer, 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci. Adv. 3(2), e1602655 (2017)
13.
go back to reference S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019) S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019)
14.
go back to reference M. Schmid, S. Thiele, A. Herkommer, H. Giessen, Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Opt. Lett. 43(23), 5837–5840 (2018) CrossRef M. Schmid, S. Thiele, A. Herkommer, H. Giessen, Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Opt. Lett. 43(23), 5837–5840 (2018) CrossRef
15.
go back to reference M. Schmid, D. Ludescher, H. Giessen, Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Exp. 9(12), 4564–4577 (2019) CrossRef M. Schmid, D. Ludescher, H. Giessen, Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Exp. 9(12), 4564–4577 (2019) CrossRef
16.
go back to reference K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, H. Giessen, Single mode fiber based delivery of OAM light by 3D direct laser writing. Opt. Exp. 25(17), 19672–19679 (2017) CrossRef K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, H. Giessen, Single mode fiber based delivery of OAM light by 3D direct laser writing. Opt. Exp. 25(17), 19672–19679 (2017) CrossRef
17.
go back to reference A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A.M. Herkommer, H. Giessen, J. Fick, Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photon. 7(1), 88–97 (2020) A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A.M. Herkommer, H. Giessen, J. Fick, Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photon. 7(1), 88–97 (2020)
18.
go back to reference T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7(1), 11763 (2016) T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7(1), 11763 (2016)
19.
go back to reference M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008) M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008)
20.
go back to reference M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004) CrossRef M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004) CrossRef
21.
go back to reference M.F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U.W. Paetzold, M. Wegener, All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces. Adv. Opt. Mater. 5(17), 1700164 (2020) M.F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U.W. Paetzold, M. Wegener, All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces. Adv. Opt. Mater. 5(17), 1700164 (2020)
22.
go back to reference J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7(1), 22–44 (2020) CrossRef J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7(1), 22–44 (2020) CrossRef
23.
go back to reference M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7(7), 543–546 (2008) CrossRef M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7(7), 543–546 (2008) CrossRef
24.
go back to reference M. Hippler, E.D. Lemma, S. Bertels, E. Blasco, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, 3D scaffolds to study basic cell biology. Adv. Mater. 31(26), 1808110 (2020) M. Hippler, E.D. Lemma, S. Bertels, E. Blasco, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, 3D scaffolds to study basic cell biology. Adv. Mater. 31(26), 1808110 (2020)
25.
go back to reference T. Frenzel, M. Kadic, M. Wegener, Three-dimensional mechanical metamaterials with a twist. Sci. 358(6366), 1072 (2017) T. Frenzel, M. Kadic, M. Wegener, Three-dimensional mechanical metamaterials with a twist. Sci. 358(6366), 1072 (2017)
26.
go back to reference M. Kadic, T. Frenzel, M. Wegener, When size matters. Nat. Phys. 14(1), 8–9 (2018) CrossRef M. Kadic, T. Frenzel, M. Wegener, When size matters. Nat. Phys. 14(1), 8–9 (2018) CrossRef
27.
go back to reference M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10(1), 232 (2019) M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10(1), 232 (2019)
28.
go back to reference I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, New twists of 3D chiral metamaterials. Adv. Mater. 31(26), 1807742 (2020) I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, New twists of 3D chiral metamaterials. Adv. Mater. 31(26), 1807742 (2020)
29.
go back to reference M. Gernhardt, E. Blasco, M. Hippler, J. Blinco, M. Bastmeyer, M. Wegener, H. Frisch, C. Barner-Kowollik, Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 31(30), 1901269 (2020) M. Gernhardt, E. Blasco, M. Hippler, J. Blinco, M. Bastmeyer, M. Wegener, H. Frisch, C. Barner-Kowollik, Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 31(30), 1901269 (2020)
30.
go back to reference L. Yang, A. Münchinger, M. Kadic, V. Hahn, F. Mayer, E. Blasco, C. Barner-Kowollik, M. Wegener, On the schwarzschild effect in 3D two-photon laser lithography. Adv. Opt. Mater. 7(22), 1901040 (2020) L. Yang, A. Münchinger, M. Kadic, V. Hahn, F. Mayer, E. Blasco, C. Barner-Kowollik, M. Wegener, On the schwarzschild effect in 3D two-photon laser lithography. Adv. Opt. Mater. 7(22), 1901040 (2020)
31.
go back to reference T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frülich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2020) T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frülich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2020)
32.
go back to reference S. Thiele, A. Herkommer, 3D-printed microoptics by femtosecond direct laser writing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 239–262 S. Thiele, A. Herkommer, 3D-printed microoptics by femtosecond direct laser writing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 239–262
33.
go back to reference M. Fateri, A. Gebhardt, Introduction to additive manufacturing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 1–22 M. Fateri, A. Gebhardt, Introduction to additive manufacturing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 1–22
34.
go back to reference Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014)
35.
go back to reference D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
36.
go back to reference Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
37.
go back to reference Schott, Optical Glass 2020. Technical report Schott AG (2020) Schott, Optical Glass 2020. Technical report Schott AG (2020)
Metadata
Title
Nanocomposites as Tunable Optical Materials
Author
Daniel Werdehausen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_4

Premium Partners