Skip to main content
Top

2024 | OriginalPaper | Chapter

Nanocomposites of Carbon for Metal-Air Batteries

Authors : Kriti Shrivastava, Ankur Jain

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extensive studies are being made on clean and sustainable energy conversion technologies to harness their potential in terms of great efficiency, large-scale uses, and negligible greenhouse gas emissions including fuel cells, metal-air batteries, and water-splitting techniques. Among them all, metal-air batteries are the most promising systems for portable electronic devices, electrical vehicles, and stationary microgrid applications due to their high energy density. However, the major limitation is the fundamental issues with their mechanism. The efficiency of energy conversion and storage is controlled by the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are generally very slow and require noble metal catalysts for fast operation. The high cost and limited availability of noble metals caused a growing interest in developing metal-free carbons as a novel class of bifunctional electrocatalysts. These materials display exceptional strength, stability, conductivity, large surface area, and high stability in both acidic and alkaline environments and therefore can play a significant role in the field of clean energy storage/conversion technologies. In this chapter, the recent advances regarding the rational design of carbon-based electrocatalysts for the oxygen reduction reaction and oxygen evolution reaction are summarized, with a special focus on their applications in Zn–air and Li–air batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peng, X., Li, T., Zhong, L., Lu, J.: Flexible metal–air batteries: an overview. SmartMat 2(2), 123–126 (2021). John Wiley & Sons Inc Peng, X., Li, T., Zhong, L., Lu, J.: Flexible metal–air batteries: an overview. SmartMat 2(2), 123–126 (2021). John Wiley & Sons Inc
2.
go back to reference Chen, Y., et al.: Metal-air batteries: progress and perspective. Sci Bull (Beijing) 67(23), 2449–2486 (2022)PubMedCrossRef Chen, Y., et al.: Metal-air batteries: progress and perspective. Sci Bull (Beijing) 67(23), 2449–2486 (2022)PubMedCrossRef
3.
go back to reference Zhang, L., Shao, Q., Zhang, J.: An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Mater. Reports: Energy 1(1), 100002 (2021) Zhang, L., Shao, Q., Zhang, J.: An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Mater. Reports: Energy 1(1), 100002 (2021)
4.
go back to reference Zhang, X., Wang, X.G., Xie, Z., Zhou, Z.: Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ. 1(1), 4–17 (2016)CrossRef Zhang, X., Wang, X.G., Xie, Z., Zhou, Z.: Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ. 1(1), 4–17 (2016)CrossRef
5.
go back to reference Wen, X., Zhang, Q., Guan, J.: Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 409, 213214 (2020)CrossRef Wen, X., Zhang, Q., Guan, J.: Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 409, 213214 (2020)CrossRef
6.
go back to reference Liu, Q., Pan, Z., Wang, E., An, L., Sun, G.: Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater 27, 478–505 (2020)CrossRef Liu, Q., Pan, Z., Wang, E., An, L., Sun, G.: Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater 27, 478–505 (2020)CrossRef
7.
go back to reference Wang, Y.J., et al.: Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chem. Eng. J. 348, 416–437 (2018)CrossRef Wang, Y.J., et al.: Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chem. Eng. J. 348, 416–437 (2018)CrossRef
8.
go back to reference Velraj, S., Zhu, J.H.: Sm0.5Sr0.5CoO3−δ—A new bi-functional catalyst for rechargeable metal-air battery applications. J. Power. Sources 227, 48–52 (2013)CrossRef Velraj, S., Zhu, J.H.: Sm0.5Sr0.5CoO3−δ—A new bi-functional catalyst for rechargeable metal-air battery applications. J. Power. Sources 227, 48–52 (2013)CrossRef
9.
go back to reference Kraytsberg, A., Ein-Eli, Y.: Review on Li–air batteries—opportunities, limitations and perspective. J. Power. Sources 196(3), 886–893 (2011)CrossRef Kraytsberg, A., Ein-Eli, Y.: Review on Li–air batteries—opportunities, limitations and perspective. J. Power. Sources 196(3), 886–893 (2011)CrossRef
10.
go back to reference Al Lawati, M.J., Jafary, T., Baawain, M.S., Al-Mamun, A.: A mini review on biofouling on air cathode of single chamber microbial fuel cell; prevention and mitigation strategies. Biocatal. Agric. Biotechnol. 22, 101370 (2019) Al Lawati, M.J., Jafary, T., Baawain, M.S., Al-Mamun, A.: A mini review on biofouling on air cathode of single chamber microbial fuel cell; prevention and mitigation strategies. Biocatal. Agric. Biotechnol. 22, 101370 (2019)
11.
go back to reference Wang, Z.L., Xu, D., Xu, J.J., Zhang, X.B.: Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22). Royal Soc. Chem., 7746–7786 (2014) Wang, Z.L., Xu, D., Xu, J.J., Zhang, X.B.: Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22). Royal Soc. Chem., 7746–7786 (2014)
12.
13.
go back to reference Haller, S., Gridin, V., Hofmann, K., Stark, R.W., Albert, B., Kramm, U.I.: Application of non-precious bifunctional catalysts for metal-air batteries. Energy Technol. 9(7) (2021) Haller, S., Gridin, V., Hofmann, K., Stark, R.W., Albert, B., Kramm, U.I.: Application of non-precious bifunctional catalysts for metal-air batteries. Energy Technol. 9(7) (2021)
14.
go back to reference Dresp, S., Strasser, P.: Non-noble metal oxides and their application as bifunctional catalyst in reversible fuel cells and rechargeable air batteries. ChemCatChem 10(18), 4162–4171 (2018)CrossRef Dresp, S., Strasser, P.: Non-noble metal oxides and their application as bifunctional catalyst in reversible fuel cells and rechargeable air batteries. ChemCatChem 10(18), 4162–4171 (2018)CrossRef
15.
go back to reference Cui, Z., Fu, G., Li, Y., Goodenough, J.B.: Ni3FeN‐supported Fe3Pt intermetallic nanoalloy as a high‐performance bifunctional catalyst for metal–air batteries. Angewandte Chemie International Edition, vol. 56, no. 33, pp. 9901–9905 (2017) Cui, Z., Fu, G., Li, Y., Goodenough, J.B.: Ni3FeN‐supported Fe3Pt intermetallic nanoalloy as a high‐performance bifunctional catalyst for metal–air batteries. Angewandte Chemie International Edition, vol. 56, no. 33, pp. 9901–9905 (2017)
16.
go back to reference Huang, Y. et al.: Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries. Adv. Mater. 31(13). Wiley-VCH Verlag (2019) Huang, Y. et al.: Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries. Adv. Mater. 31(13). Wiley-VCH Verlag (2019)
17.
go back to reference Lai, L., et al.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012)CrossRef Lai, L., et al.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012)CrossRef
18.
go back to reference Yang, D.-S., Bhattacharjya, D., Inamdar, S., Park, J., Yu, J.-S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134(39), 16127–16130 (2012) Yang, D.-S., Bhattacharjya, D., Inamdar, S., Park, J., Yu, J.-S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134(39), 16127–16130 (2012)
19.
go back to reference Kong, X., Huang, Y., Liu, Q.: Two-dimensional boron-doped graphyne nanosheet: a new metal-free catalyst for oxygen evolution reaction. Carbon N Y 123, 558–564 (2017)CrossRef Kong, X., Huang, Y., Liu, Q.: Two-dimensional boron-doped graphyne nanosheet: a new metal-free catalyst for oxygen evolution reaction. Carbon N Y 123, 558–564 (2017)CrossRef
20.
go back to reference Kang, X., et al.: Iron and boron-doped carbonized zeolitic imidazolate frameworks as efficient oxygen reduction electrocatalysts for Al-Air batteries. Int. J. Hydrogen Energy 46(73), 36221–36231 (2021)CrossRef Kang, X., et al.: Iron and boron-doped carbonized zeolitic imidazolate frameworks as efficient oxygen reduction electrocatalysts for Al-Air batteries. Int. J. Hydrogen Energy 46(73), 36221–36231 (2021)CrossRef
21.
go back to reference Fan, H., et al.: Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Energy Chem. 34, 64–71 (2019)CrossRef Fan, H., et al.: Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Energy Chem. 34, 64–71 (2019)CrossRef
22.
go back to reference Liu, W., et al.: Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery. Adv. Funct. Mater. 28(11), 1706675–1706675 (2018)CrossRef Liu, W., et al.: Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery. Adv. Funct. Mater. 28(11), 1706675–1706675 (2018)CrossRef
23.
go back to reference Patra, S., Choudhary, R., Roy, E., Madhuri, R., Sharma, P.K.: Heteroatom-doped graphene ‘Idli’: a green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery. Nano Energy 30, 118–129 (2016)CrossRef Patra, S., Choudhary, R., Roy, E., Madhuri, R., Sharma, P.K.: Heteroatom-doped graphene ‘Idli’: a green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery. Nano Energy 30, 118–129 (2016)CrossRef
24.
go back to reference Sun, Y.N., et al.: Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc–air batteries. Appl. Catal. B 297, 120448 (2021)CrossRef Sun, Y.N., et al.: Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc–air batteries. Appl. Catal. B 297, 120448 (2021)CrossRef
25.
go back to reference Zhu, P., Gao, J., Chen, X., Liu, S.: An efficient metal-free bifunctional oxygen electrocatalyst of carbon co-doped with fluorine and nitrogen atoms for rechargeable Zn-air battery. Int. J. Hydrogen Energy 45(16), 9512–9521 (2020)CrossRef Zhu, P., Gao, J., Chen, X., Liu, S.: An efficient metal-free bifunctional oxygen electrocatalyst of carbon co-doped with fluorine and nitrogen atoms for rechargeable Zn-air battery. Int. J. Hydrogen Energy 45(16), 9512–9521 (2020)CrossRef
26.
go back to reference Shao, Y., Park, S., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J.: Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2(5), 844–857 (2012) Shao, Y., Park, S., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J.: Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2(5), 844–857 (2012)
27.
go back to reference Li, Q., Cao, R., Cho, J., Wu, G.: Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Phys. Chemistry Chem. Phys. 16(27), 13568–13582 (2014) Li, Q., Cao, R., Cho, J., Wu, G.: Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Phys. Chemistry Chem. Phys. 16(27), 13568–13582 (2014)
28.
go back to reference Tu, Y., Deng, D., Bao, X.: Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. J. Energy Chem. 25(6), 957–966 (2016); Lin, X., Sun, Q., Davis, K.D., Li, R., Sun, X.: The application of carbon materials in nonaqueous Na–O2 batteries. Carbon Energy 1(2), 141–164 (2019) Tu, Y., Deng, D., Bao, X.: Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. J. Energy Chem. 25(6), 957–966 (2016); Lin, X., Sun, Q., Davis, K.D., Li, R., Sun, X.: The application of carbon materials in nonaqueous Na–O2 batteries. Carbon Energy 1(2), 141–164 (2019)
29.
go back to reference Li, W., Han, C., Zhang, K., Chou, S., Dou, S.: Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal-air battery systems. J. Mater. Chem. A 9(11). Royal Society of Chemistry, pp. 6671–6693 (2021) Li, W., Han, C., Zhang, K., Chou, S., Dou, S.: Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal-air battery systems. J. Mater. Chem. A 9(11). Royal Society of Chemistry, pp. 6671–6693 (2021)
30.
go back to reference Wang, M., et al.: N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery. Int. J. Hydrogen Energy 40(46), 16230–16237 (2015)CrossRef Wang, M., et al.: N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery. Int. J. Hydrogen Energy 40(46), 16230–16237 (2015)CrossRef
31.
go back to reference Niu, W., et al.: Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-Air batteries. Adv. Energy Mater. 8(1), 1701642–1701642 (2018)CrossRef Niu, W., et al.: Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-Air batteries. Adv. Energy Mater. 8(1), 1701642–1701642 (2018)CrossRef
32.
go back to reference Wang, Q., et al.: Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn-air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018)PubMedCrossRef Wang, Q., et al.: Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn-air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018)PubMedCrossRef
33.
go back to reference Gehring, M., Tempel, H., Merlen, A., Schierholz, R., Eichel, R.A., Kungl, H.: Carbonisation temperature dependence of electrochemical activity of nitrogen-doped carbon fibres from electrospinning as air-cathodes for aqueous-alkaline metal-air batteries. RSC Adv. 9(47), 27231–27241 (2019)PubMedPubMedCentralCrossRef Gehring, M., Tempel, H., Merlen, A., Schierholz, R., Eichel, R.A., Kungl, H.: Carbonisation temperature dependence of electrochemical activity of nitrogen-doped carbon fibres from electrospinning as air-cathodes for aqueous-alkaline metal-air batteries. RSC Adv. 9(47), 27231–27241 (2019)PubMedPubMedCentralCrossRef
34.
go back to reference Lv, Q., et al.: Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B 261, 118234 (2020)CrossRef Lv, Q., et al.: Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B 261, 118234 (2020)CrossRef
35.
go back to reference Zhang, L., et al.: Co/MoC nanoparticles embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn–air battery and water electrocatalysis. ACS Nano 15(8), 13399–13414 (2021)PubMedCrossRef Zhang, L., et al.: Co/MoC nanoparticles embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn–air battery and water electrocatalysis. ACS Nano 15(8), 13399–13414 (2021)PubMedCrossRef
36.
go back to reference Li, P., et al.: Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B 316, 121674 (2022)CrossRef Li, P., et al.: Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B 316, 121674 (2022)CrossRef
37.
go back to reference Wan, W., Liu, X., Li, H., Peng, X., Xi, D., Luo, J.: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B 240, 193–200 (2019)CrossRef Wan, W., Liu, X., Li, H., Peng, X., Xi, D., Luo, J.: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B 240, 193–200 (2019)CrossRef
38.
go back to reference Yan, L., Wang, H., Shen, J., Ning, J., Zhong, Y., Hu, Y.: Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 403, 126385 (2021)CrossRef Yan, L., Wang, H., Shen, J., Ning, J., Zhong, Y., Hu, Y.: Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 403, 126385 (2021)CrossRef
39.
go back to reference Xue, Y., Guo, Y., Zhang, Q., Xie, Z., Wei, J., Zhou, Z.: MOF-Derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nanomicro Lett. 14(1) (2022) Xue, Y., Guo, Y., Zhang, Q., Xie, Z., Wei, J., Zhou, Z.: MOF-Derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nanomicro Lett. 14(1) (2022)
40.
go back to reference Hu, X., et al.: Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B 268, 118405 (2020)CrossRef Hu, X., et al.: Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B 268, 118405 (2020)CrossRef
41.
go back to reference Chen, D., et al.: Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl. Catal. B 268, 118729 (2020)CrossRef Chen, D., et al.: Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl. Catal. B 268, 118729 (2020)CrossRef
42.
go back to reference Liu, J., et al.: CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B 279, 119407 (2020)CrossRef Liu, J., et al.: CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B 279, 119407 (2020)CrossRef
43.
go back to reference Xu, X., et al.: Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn−air battery. Adv. Powder Mater. 1(3), 100027 (2022)CrossRef Xu, X., et al.: Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn−air battery. Adv. Powder Mater. 1(3), 100027 (2022)CrossRef
44.
go back to reference Kopiec, D., Kierzek, K.: Application of functionalized carbon nanotubes as the cathode of nonaqueous lithium-oxygen cells. Solid State Ion. 385, 116007 (2022)CrossRef Kopiec, D., Kierzek, K.: Application of functionalized carbon nanotubes as the cathode of nonaqueous lithium-oxygen cells. Solid State Ion. 385, 116007 (2022)CrossRef
45.
go back to reference Wu, G., et al.: Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6(11), 9764–9776 (2012)PubMedCrossRef Wu, G., et al.: Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6(11), 9764–9776 (2012)PubMedCrossRef
46.
go back to reference Wu, M.C., Zhao, T.S., Tan, P., Jiang, H.R., Zhu, X.B.: Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries. Electrochim. Acta 211, 545–551 (2016)CrossRef Wu, M.C., Zhao, T.S., Tan, P., Jiang, H.R., Zhu, X.B.: Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries. Electrochim. Acta 211, 545–551 (2016)CrossRef
47.
go back to reference Liu, Y., et al.: Conformal coating of heterogeneous CoO/Co nanocomposites on carbon nanotubes as efficient bifunctional electrocatalyst for Li-Air batteries. Electrochim. Acta 219, 560–567 (2016)CrossRef Liu, Y., et al.: Conformal coating of heterogeneous CoO/Co nanocomposites on carbon nanotubes as efficient bifunctional electrocatalyst for Li-Air batteries. Electrochim. Acta 219, 560–567 (2016)CrossRef
48.
go back to reference Hang, Y., et al.: α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J. Power. Sources 392, 15–22 (2018)CrossRef Hang, Y., et al.: α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J. Power. Sources 392, 15–22 (2018)CrossRef
49.
go back to reference Zhai, Y., et al.: Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li–O2 batteries. J. Catal. 377, 534–542 (2019)CrossRef Zhai, Y., et al.: Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li–O2 batteries. J. Catal. 377, 534–542 (2019)CrossRef
50.
go back to reference Wang, J., Fan, M., Tu, W., Chen, K., Shen, Y., Zhang, H.: In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. J. Alloys Compd. 777, 944–953 (2019)CrossRef Wang, J., Fan, M., Tu, W., Chen, K., Shen, Y., Zhang, H.: In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. J. Alloys Compd. 777, 944–953 (2019)CrossRef
51.
go back to reference Song, L., et al.: An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 71, 104595 (2020)CrossRef Song, L., et al.: An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 71, 104595 (2020)CrossRef
52.
go back to reference Zhang, G., et al.: Phosphorus-doped carbon as cathode material for high energy nonaqueous Li–O2 batteries. Appl. Surf. Sci. 543, 148864 (2021)CrossRef Zhang, G., et al.: Phosphorus-doped carbon as cathode material for high energy nonaqueous Li–O2 batteries. Appl. Surf. Sci. 543, 148864 (2021)CrossRef
53.
go back to reference Inozemtseva, A.I., et al.: On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR. Carbon N Y 176, 632–641 (2021)CrossRef Inozemtseva, A.I., et al.: On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR. Carbon N Y 176, 632–641 (2021)CrossRef
54.
go back to reference Liang, H., Jia, L., Chen, F., Jing, S., Tsiakaras, P.: A novel efficient electrocatalyst for oxygen reduction and oxygen evolution reaction in Li–O2 batteries: Co/CoSe embedded N, Se co-doped carbon. Appl. Catal. B 317, 121698 (2022)CrossRef Liang, H., Jia, L., Chen, F., Jing, S., Tsiakaras, P.: A novel efficient electrocatalyst for oxygen reduction and oxygen evolution reaction in Li–O2 batteries: Co/CoSe embedded N, Se co-doped carbon. Appl. Catal. B 317, 121698 (2022)CrossRef
55.
go back to reference Wang, Y., Yu, M., Zhang, T., Xue, Z., Ma, Y., Sun, H.: Defect-rich boron doped carbon nanotubes as an electrocatalyst for hybrid Li–air batteries. Catal. Sci. Technol. 12(1), 332–338 (2022)CrossRef Wang, Y., Yu, M., Zhang, T., Xue, Z., Ma, Y., Sun, H.: Defect-rich boron doped carbon nanotubes as an electrocatalyst for hybrid Li–air batteries. Catal. Sci. Technol. 12(1), 332–338 (2022)CrossRef
56.
go back to reference Thakur, P., Puthirath, A.B., Ajayan, P.M., Narayanan, T.N.: Iron carbide decorated carbon nanosphere- sheet hybrid based rechargeable high-capacity non-aqueous Li–O2 batteries. Carbon N Y 196, 320–326 (2022)CrossRef Thakur, P., Puthirath, A.B., Ajayan, P.M., Narayanan, T.N.: Iron carbide decorated carbon nanosphere- sheet hybrid based rechargeable high-capacity non-aqueous Li–O2 batteries. Carbon N Y 196, 320–326 (2022)CrossRef
57.
go back to reference Salado, M., Lizundia, E.: Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater. Today Energy 28, 101064 (2022)CrossRef Salado, M., Lizundia, E.: Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater. Today Energy 28, 101064 (2022)CrossRef
58.
go back to reference Yu, D., et al.: Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries. Adv. Energy Mater. 11(30), 2101242–2101242 (2021)CrossRef Yu, D., et al.: Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries. Adv. Energy Mater. 11(30), 2101242–2101242 (2021)CrossRef
59.
go back to reference Peng, L., Shang, L., Zhang, T., Geoffrey IN Waterhouse: Recent advances in the development of single‐atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10(48), 2003018–2003018 (2020) Peng, L., Shang, L., Zhang, T., Geoffrey IN Waterhouse: Recent advances in the development of single‐atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10(48), 2003018–2003018 (2020)
60.
go back to reference Han, J., Meng, X., Lu, L., Bian, J., Li, Z., Sun, C.: Single‐atom Fe‐Nx‐C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872–1808872 (2019) Han, J., Meng, X., Lu, L., Bian, J., Li, Z., Sun, C.: Single‐atom Fe‐Nx‐C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872–1808872 (2019)
61.
go back to reference Wang, Y., et al.: Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15(1), 210–239 (2021)PubMedCrossRef Wang, Y., et al.: Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15(1), 210–239 (2021)PubMedCrossRef
62.
go back to reference Zhong, L., et al.: Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 6(10), 3624–3633 (2021)CrossRef Zhong, L., et al.: Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 6(10), 3624–3633 (2021)CrossRef
63.
go back to reference Ma, Y., et al.: An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon N Y 185, 526–535 (2021)CrossRef Ma, Y., et al.: An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon N Y 185, 526–535 (2021)CrossRef
64.
go back to reference Wu, Y., et al.: Soft template-directed interlayer confinement synthesis of a Fe–Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater 45, 805–813 (2022)CrossRef Wu, Y., et al.: Soft template-directed interlayer confinement synthesis of a Fe–Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater 45, 805–813 (2022)CrossRef
65.
go back to reference Xia, Q. et al.: Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy Mater. 2(3) (2022) Xia, Q. et al.: Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy Mater. 2(3) (2022)
66.
go back to reference Nomura, A., Ito, K., Kubo, Y.: CNT Sheet air electrode for the development of ultra-high cell capacity in lithium-air batteries. Sci. Rep. 7 (2017) Nomura, A., Ito, K., Kubo, Y.: CNT Sheet air electrode for the development of ultra-high cell capacity in lithium-air batteries. Sci. Rep. 7 (2017)
67.
go back to reference Wang, S., Qin, J., Meng, T., Cao, M.: Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 39, 626–638 (2017)CrossRef Wang, S., Qin, J., Meng, T., Cao, M.: Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 39, 626–638 (2017)CrossRef
68.
go back to reference Zong, L., et al.: Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett. 32(3), 1121–1126 (2021)CrossRef Zong, L., et al.: Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett. 32(3), 1121–1126 (2021)CrossRef
69.
go back to reference Ji, D., et al.: Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon N Y 142, 379–387 (2019)CrossRef Ji, D., et al.: Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon N Y 142, 379–387 (2019)CrossRef
70.
go back to reference Lu, L.N., Luo, Y.L., Liu, H.J., Chen, Y.X., Xiao, K., Liu, Z.Q.: Multivalent CoSx coupled with N-doped CNTs/Ni as an advanced oxygen electrocatalyst for zinc-air batteries. Chem. Eng. J. 427, 132041 (2022)CrossRef Lu, L.N., Luo, Y.L., Liu, H.J., Chen, Y.X., Xiao, K., Liu, Z.Q.: Multivalent CoSx coupled with N-doped CNTs/Ni as an advanced oxygen electrocatalyst for zinc-air batteries. Chem. Eng. J. 427, 132041 (2022)CrossRef
71.
go back to reference Ye, M., Hu, F., Yu, D., Han, S., Li, L., Peng, S.: Hierarchical FeC/MnO2 composite with in-situ grown CNTs as an advanced trifunctional catalyst for water splitting and Metal−Air batteries. Ceram. Int. 47(13), 18424–18432 (2021)CrossRef Ye, M., Hu, F., Yu, D., Han, S., Li, L., Peng, S.: Hierarchical FeC/MnO2 composite with in-situ grown CNTs as an advanced trifunctional catalyst for water splitting and Metal−Air batteries. Ceram. Int. 47(13), 18424–18432 (2021)CrossRef
72.
go back to reference Li, P. et al.: Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal B 316 (2022) Li, P. et al.: Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal B 316 (2022)
73.
go back to reference Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D.L.: Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691 (2021)CrossRef Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D.L.: Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691 (2021)CrossRef
74.
go back to reference Das, G.S., Hwang, J.Y., Jang, J.-H., Tripathi, K.M., Kim, T.Y.: Biomass-based functionalized graphene for self-rechargeable zinc–air batteries. ACS Appl. Energy Mater. 5(6), 6663–6670 (2022) Das, G.S., Hwang, J.Y., Jang, J.-H., Tripathi, K.M., Kim, T.Y.: Biomass-based functionalized graphene for self-rechargeable zinc–air batteries. ACS Appl. Energy Mater. 5(6), 6663–6670 (2022)
75.
go back to reference Wang, C., Ran, S., Sun, W., Zhu, Z.: Biomass-derived carbon materials with controllable preparation and their applications in zinc-air batteries: a mini review. Electrochem. Commun. 154, 107557 (2023)CrossRef Wang, C., Ran, S., Sun, W., Zhu, Z.: Biomass-derived carbon materials with controllable preparation and their applications in zinc-air batteries: a mini review. Electrochem. Commun. 154, 107557 (2023)CrossRef
76.
go back to reference Sekhon, S.S., Lee, J., Park, J.S.: Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review. J. Energy Chem. 65, 149–172 (2022)CrossRef Sekhon, S.S., Lee, J., Park, J.S.: Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review. J. Energy Chem. 65, 149–172 (2022)CrossRef
77.
go back to reference Lim, B.A., Lim, S., Pang, Y.L., Shuit, S.H., Kuan, S.H.: Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries. Renew. Sustain. Energy Rev. 184 (2023) Lim, B.A., Lim, S., Pang, Y.L., Shuit, S.H., Kuan, S.H.: Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries. Renew. Sustain. Energy Rev. 184 (2023)
Metadata
Title
Nanocomposites of Carbon for Metal-Air Batteries
Authors
Kriti Shrivastava
Ankur Jain
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_7