Skip to main content
Top

2024 | OriginalPaper | Chapter

Nanocomposites of Carbon for Supercapacitors

Authors : Biraj Kanta Satpathy, Agni Kumar Biswal, Rasmita Barik

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing need for electronic devices that are flexible, wearable, and hybrid has piqued the interest of researchers and industries alike. Supercapacitors have emerged as alternative sources of renewable energy with extraordinary properties such as high capacity, stability, fast charging and discharging rates, stable cycle life, low cost, and ease of production. Great advancements have been made in the past decades to enhance the potential and performance of supercapacitors with novel engineering in materials synthesis, configuration, and characterization techniques. Out of all the available flexible energy storage materials, the nanocarbons or nanocarbon-based materials (such as activated carbon, carbon dots, graphene, fullerene, and nanofibers) stand out with high surface area, exceptional mechanical and electrical properties, and outstanding electrochemical characteristics. In the present book chapter, the brief introduction of different nanocarbons for energy storage devices is explained along with the different carbon-based composites and their design and assembling as flexible supercapacitor materials. A brief elaboration of different synthesis methods and how they can be helpful in developing suitable electrodes for supercapacitors. Finally, the challenges and future perspectives in the development and optimization of nanocarbon composites as futuristic supercapacitors are explained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kötz, R., Carlen, M.: Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15), 2483–2498 (2000)CrossRef Kötz, R., Carlen, M.: Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15), 2483–2498 (2000)CrossRef
2.
go back to reference Burke, A.: Ultracapacitors: why, how, and where is the technology. J. Power. Sources 91(1), 37–50 (2000)CrossRef Burke, A.: Ultracapacitors: why, how, and where is the technology. J. Power. Sources 91(1), 37–50 (2000)CrossRef
3.
go back to reference Noori, A., El-Kady, M.F., Rahmanifar, M.S., Kaner, R.B., Mousavi, M.F.: Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019)CrossRefPubMed Noori, A., El-Kady, M.F., Rahmanifar, M.S., Kaner, R.B., Mousavi, M.F.: Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019)CrossRefPubMed
4.
go back to reference Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)CrossRefPubMed Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)CrossRefPubMed
5.
go back to reference Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.-L., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)CrossRefPubMed Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.-L., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)CrossRefPubMed
6.
go back to reference Yadlapalli, R.T., Alla, R.R., Kandipati, R., Kotapati, A.: Super capacitors for energy storage: progress, applications and challenges. J. Energy Storage 49, 104194 (2022)CrossRef Yadlapalli, R.T., Alla, R.R., Kandipati, R., Kotapati, A.: Super capacitors for energy storage: progress, applications and challenges. J. Energy Storage 49, 104194 (2022)CrossRef
7.
go back to reference Sahoo, R., Lee, T.H., Pham, D.T., Luu, T.H.T., Lee, Y.H.: Fast-charging high-energy battery-supercapacitor hybrid: anodic reduced graphene oxide–vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano 13(9), 10776–10786 (2019)CrossRefPubMed Sahoo, R., Lee, T.H., Pham, D.T., Luu, T.H.T., Lee, Y.H.: Fast-charging high-energy battery-supercapacitor hybrid: anodic reduced graphene oxide–vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano 13(9), 10776–10786 (2019)CrossRefPubMed
8.
go back to reference Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., Simon, P.: Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008)CrossRefPubMed Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., Simon, P.: Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008)CrossRefPubMed
9.
go back to reference Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)CrossRefPubMed Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)CrossRefPubMed
10.
go back to reference Miao, L., Song, Z., Zhu, D., Li, L., Gan, L., Liu, M.: Recent advances in carbon-based supercapacitors. Mater. Adv. 1(5), 945–966 (2020)CrossRef Miao, L., Song, Z., Zhu, D., Li, L., Gan, L., Liu, M.: Recent advances in carbon-based supercapacitors. Mater. Adv. 1(5), 945–966 (2020)CrossRef
11.
go back to reference Komatsubara, K., Suzuki, H., Inoue, H., Kishibuchi, M., Takahashi, S., Marui, T., Umezawa, S., Nakagawa, T., Nasu, K., Maetani, M., Tanaka, Y., Yamada, M., Nishikawa, T., Yamashita, Y., Hada, M., Hayashi, Y.: Highly oriented carbon nanotube supercapacitors. ACS Appl. Nano Mater. 5(1), 1521–1532 (2022)CrossRef Komatsubara, K., Suzuki, H., Inoue, H., Kishibuchi, M., Takahashi, S., Marui, T., Umezawa, S., Nakagawa, T., Nasu, K., Maetani, M., Tanaka, Y., Yamada, M., Nishikawa, T., Yamashita, Y., Hada, M., Hayashi, Y.: Highly oriented carbon nanotube supercapacitors. ACS Appl. Nano Mater. 5(1), 1521–1532 (2022)CrossRef
12.
go back to reference Cheng, F., Yang, X., Zhang, S., Lu, W.: Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J. Power. Sources 450, 227678 (2020)CrossRef Cheng, F., Yang, X., Zhang, S., Lu, W.: Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J. Power. Sources 450, 227678 (2020)CrossRef
13.
go back to reference Wu, J., Wei, F., Sui, Y., Qi, J., Zhang, X.: Interconnected NiS-nanosheets@porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. Int. J. Hydrogen Energy 45, 19237–19245 (2020)CrossRef Wu, J., Wei, F., Sui, Y., Qi, J., Zhang, X.: Interconnected NiS-nanosheets@porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. Int. J. Hydrogen Energy 45, 19237–19245 (2020)CrossRef
14.
go back to reference Dai, E., Xu, J., Qiu, J., Liu, S., Chen, P., Liu, Y.: Co@Carbon and Co3O4@Carbon nanocomposites derived from a single MOF for supercapacitors. Sci. Rep. 7, Article number: 12588 (2017) Dai, E., Xu, J., Qiu, J., Liu, S., Chen, P., Liu, Y.: Co@Carbon and Co3O4@Carbon nanocomposites derived from a single MOF for supercapacitors. Sci. Rep. 7, Article number: 12588 (2017)
15.
go back to reference Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.-L., Simon, P.: Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)CrossRefPubMed Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.-L., Simon, P.: Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)CrossRefPubMed
16.
go back to reference Olejnik, P., Gniadek, M., Echegoyen, L., Plonska-Brzezinska, M.E.: Nanoforest: polyaniline nanotubes modified with carbon nano-onions as a nanocomposite material for easy-to-miniaturize high-performance solid-state supercapacitors. Polymers 10(12), 1408 (2018)CrossRefPubMedPubMedCentral Olejnik, P., Gniadek, M., Echegoyen, L., Plonska-Brzezinska, M.E.: Nanoforest: polyaniline nanotubes modified with carbon nano-onions as a nanocomposite material for easy-to-miniaturize high-performance solid-state supercapacitors. Polymers 10(12), 1408 (2018)CrossRefPubMedPubMedCentral
17.
go back to reference Roy, P., Srivastava, S.K., eds.: Nanomaterials for Electrochemical Energy Storage Devices. Wiley-Scrivener (2019) Roy, P., Srivastava, S.K., eds.: Nanomaterials for Electrochemical Energy Storage Devices. Wiley-Scrivener (2019)
18.
go back to reference Kumar, S., Rehman, M.A., Lee, S., Kim, M., Hong, H., Park, J-Y., Seo, Y.: Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Sci. Rep. 11, Article number: 649 (2021) Kumar, S., Rehman, M.A., Lee, S., Kim, M., Hong, H., Park, J-Y., Seo, Y.: Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Sci. Rep. 11, Article number: 649 (2021)
19.
go back to reference Thalji, M.R., Ali, G.A.M., Liu, P., Zhong, Y.L., Chong, K.F.: W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chem. Eng. J. 409, 128216 (2021)CrossRef Thalji, M.R., Ali, G.A.M., Liu, P., Zhong, Y.L., Chong, K.F.: W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chem. Eng. J. 409, 128216 (2021)CrossRef
20.
go back to reference Sarmah, D., Kumar, A.: Symmetric Supercapacitors with layer-by-layer molybdenum disulfide - reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. J. Energy Storage 35, 102289 (2021)CrossRef Sarmah, D., Kumar, A.: Symmetric Supercapacitors with layer-by-layer molybdenum disulfide - reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. J. Energy Storage 35, 102289 (2021)CrossRef
21.
go back to reference Luo, J., Wang, J., Liu, S., Wu, W., Jia, T., Yang, Z., Mu, S., Huang, Y.: Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146, 1–8 (2019)CrossRef Luo, J., Wang, J., Liu, S., Wu, W., Jia, T., Yang, Z., Mu, S., Huang, Y.: Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146, 1–8 (2019)CrossRef
22.
go back to reference Qiu, H., Sun, X., An, S., Lan, D., Cui, J., Zhang, Y., He, W.: Microwave synthesis of histidine-functionalized graphene quantum dots/Ni–Co LDH with flower ball structure for supercapacitor. J. Colloid Interface Sci. 567, 264–273 (2020)CrossRefPubMed Qiu, H., Sun, X., An, S., Lan, D., Cui, J., Zhang, Y., He, W.: Microwave synthesis of histidine-functionalized graphene quantum dots/Ni–Co LDH with flower ball structure for supercapacitor. J. Colloid Interface Sci. 567, 264–273 (2020)CrossRefPubMed
23.
go back to reference Yoo, J.J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B.G., Srivastava, A., Conway, M., Mohana Reddy, A.L., Yu, J., Vajtai, R., Ajayan, P.M.: Ultrathin planar graphene supercapacitors. Nano Lett. 11(4), 1423–1427 (2011)CrossRefPubMed Yoo, J.J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B.G., Srivastava, A., Conway, M., Mohana Reddy, A.L., Yu, J., Vajtai, R., Ajayan, P.M.: Ultrathin planar graphene supercapacitors. Nano Lett. 11(4), 1423–1427 (2011)CrossRefPubMed
24.
go back to reference Yamamoto, T., Watanabe, K., Hernández, E.R.: Mechanical properties, thermal stability and heat transport in carbon nanotubes. Appl. Phys. 111, 165–195 (2008)CrossRef Yamamoto, T., Watanabe, K., Hernández, E.R.: Mechanical properties, thermal stability and heat transport in carbon nanotubes. Appl. Phys. 111, 165–195 (2008)CrossRef
25.
go back to reference Kumar, R., Joanni, E., Sahoo, S., Shim, J.J., Tan, W.K., Matsuda, A., Singh, R.K.: An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon 193, 298–338 (2022)CrossRef Kumar, R., Joanni, E., Sahoo, S., Shim, J.J., Tan, W.K., Matsuda, A., Singh, R.K.: An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon 193, 298–338 (2022)CrossRef
26.
go back to reference Wang, J., Guo, X., Cui, R., Huang, H., Liu, B., Li, Y., Wang, D., Zhao, D., Dong, J., Li, S., Sun, B.: MnO2/porous carbon nanotube/MnO2 nanocomposites for high-performance supercapacitor. ACS Appl. Nano Mater. 3, 11152–11159 (2020)CrossRef Wang, J., Guo, X., Cui, R., Huang, H., Liu, B., Li, Y., Wang, D., Zhao, D., Dong, J., Li, S., Sun, B.: MnO2/porous carbon nanotube/MnO2 nanocomposites for high-performance supercapacitor. ACS Appl. Nano Mater. 3, 11152–11159 (2020)CrossRef
27.
go back to reference Sun, Y., Du, X., Zhang, J., Huang, N., Yang, L., Sun, X.: Microwave-assisted preparation and improvement mechanism of carbon nanotube@NiMn2O4 core-shell nanocomposite for high performance asymmetric supercapacitors. J. Power. Sources 473, 228609 (2020)CrossRef Sun, Y., Du, X., Zhang, J., Huang, N., Yang, L., Sun, X.: Microwave-assisted preparation and improvement mechanism of carbon nanotube@NiMn2O4 core-shell nanocomposite for high performance asymmetric supercapacitors. J. Power. Sources 473, 228609 (2020)CrossRef
28.
go back to reference Bathula, C., Rabani, I., Kadam, A., Opoku, H., Patil, S.A., Shreshta, N.K., Hwang, J.-H., Seo, Y.-S., Kim, H.-S.: Sonochemically exfoliated polymer-carbon nanotube interface for high performance supercapacitors. J. Colloid Interface Sci. 606, 1792–1799 (2022)CrossRefPubMed Bathula, C., Rabani, I., Kadam, A., Opoku, H., Patil, S.A., Shreshta, N.K., Hwang, J.-H., Seo, Y.-S., Kim, H.-S.: Sonochemically exfoliated polymer-carbon nanotube interface for high performance supercapacitors. J. Colloid Interface Sci. 606, 1792–1799 (2022)CrossRefPubMed
29.
go back to reference Lee, S.H., Kim, K.Y., Yoon, J.R.: Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors. NPG Asia Mater. 12, 28 (2020)CrossRef Lee, S.H., Kim, K.Y., Yoon, J.R.: Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors. NPG Asia Mater. 12, 28 (2020)CrossRef
30.
go back to reference Mukhiya, T., Ojha, G.P., Dahal, B., Kim, T., Chhetri, K., Lee, M., Chae, S.H., Muthurasu, A., Tiwari, A.P., Kim, H.Y.: Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hollow carbon nanofibers network for supercapacitor. ACS Appl. Energy Mater. 3, 3435–3444 (2020)CrossRef Mukhiya, T., Ojha, G.P., Dahal, B., Kim, T., Chhetri, K., Lee, M., Chae, S.H., Muthurasu, A., Tiwari, A.P., Kim, H.Y.: Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hollow carbon nanofibers network for supercapacitor. ACS Appl. Energy Mater. 3, 3435–3444 (2020)CrossRef
31.
go back to reference Barik, R., Raulo, A., Jha, S., Nandan, B., Ingole, P.P.: Polymer-derived electrospun Co3O4@C porous nanofiber network, for flexible, high-performance, and stable supercapacitors. ACS Appl. Energy Mater. 3(11), 11002–11014 (2020)CrossRef Barik, R., Raulo, A., Jha, S., Nandan, B., Ingole, P.P.: Polymer-derived electrospun Co3O4@C porous nanofiber network, for flexible, high-performance, and stable supercapacitors. ACS Appl. Energy Mater. 3(11), 11002–11014 (2020)CrossRef
32.
go back to reference Jorn-am, T., Pholauyphon, W., Supchocksoonthorn, P., Sirisit, N., Chanthad, C., Manyam, J., Liang, X., Song, S., Paoprasert, P.: High-performance supercapacitors using synergistic hierarchical Ni-doped copper compounds/activated carbon composites with MXenes and carbon dots as simultaneous performance enhancers. Electrochim. Acta 447, 142147 (2023)CrossRef Jorn-am, T., Pholauyphon, W., Supchocksoonthorn, P., Sirisit, N., Chanthad, C., Manyam, J., Liang, X., Song, S., Paoprasert, P.: High-performance supercapacitors using synergistic hierarchical Ni-doped copper compounds/activated carbon composites with MXenes and carbon dots as simultaneous performance enhancers. Electrochim. Acta 447, 142147 (2023)CrossRef
33.
go back to reference Wei, J.S., Ding, C., Zhang, P., Ding, H., Niu, X.Q., Ma, Y.Y., Li, C., Wang, Y.G., Xiong, H.M.: Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 31, 1806197 (2019)CrossRef Wei, J.S., Ding, C., Zhang, P., Ding, H., Niu, X.Q., Ma, Y.Y., Li, C., Wang, Y.G., Xiong, H.M.: Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 31, 1806197 (2019)CrossRef
34.
go back to reference Lee, J.H., Park, S.J.: Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163, 1–18 (2020)CrossRef Lee, J.H., Park, S.J.: Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163, 1–18 (2020)CrossRef
35.
go back to reference Zuo, L., Fan, W., Zhang, Y., Huang, Y., Gao, W., Liu, T.: Bacterial cellulose-based sheet-like carbon aerogels for the in-situ growth of nickel sulfide as high-performance electrode materials for asymmetric supercapacitors. Nanoscale 9, 4445–4455 (2017)CrossRefPubMed Zuo, L., Fan, W., Zhang, Y., Huang, Y., Gao, W., Liu, T.: Bacterial cellulose-based sheet-like carbon aerogels for the in-situ growth of nickel sulfide as high-performance electrode materials for asymmetric supercapacitors. Nanoscale 9, 4445–4455 (2017)CrossRefPubMed
36.
go back to reference Liu, H., Xu, T., Cai, C., Liu, K., Liu, W., Zhang, M., Du, H., Si, C., Zhang, K.: Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2270149 (2022)CrossRef Liu, H., Xu, T., Cai, C., Liu, K., Liu, W., Zhang, M., Du, H., Si, C., Zhang, K.: Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2270149 (2022)CrossRef
37.
go back to reference Cheng, H., Dong, Z., Hu, C., Zhao, Y., Hu, Y., Qu, L., Chen, N., Dai, L.: Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8), 3428–3434 (2013)CrossRefPubMed Cheng, H., Dong, Z., Hu, C., Zhao, Y., Hu, Y., Qu, L., Chen, N., Dai, L.: Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8), 3428–3434 (2013)CrossRefPubMed
38.
go back to reference Verma, S., Padha, B., Singh, A., Khajuria, S., Sharma, A., Mahajan, P., Singh, B., Arya, S.: Sol-gel synthesized carbon nanoparticles as supercapacitor electrodes with ultralong cycling stability. Fuller. Nanotub. Carbon Nanostructures 29(12), 1045–1052 (2021)CrossRef Verma, S., Padha, B., Singh, A., Khajuria, S., Sharma, A., Mahajan, P., Singh, B., Arya, S.: Sol-gel synthesized carbon nanoparticles as supercapacitor electrodes with ultralong cycling stability. Fuller. Nanotub. Carbon Nanostructures 29(12), 1045–1052 (2021)CrossRef
39.
go back to reference Dhere, S.: Electrode materials for supercapacitors synthesized by sol-gel process. Curr. Sci. 115(3), 436–449 (2018)CrossRef Dhere, S.: Electrode materials for supercapacitors synthesized by sol-gel process. Curr. Sci. 115(3), 436–449 (2018)CrossRef
40.
go back to reference Bhartiya, S., Singh, R., Singh, A., Balal, M., Bhardwaj, P., Kohli, D.K., Singh, M.K.: Nitrogen-doped carbon aerogel synthesis by solvothermal gelation for supercapacitor application. J. Solid State Electrochem. 26(12), 2829–2839 (2022)CrossRef Bhartiya, S., Singh, R., Singh, A., Balal, M., Bhardwaj, P., Kohli, D.K., Singh, M.K.: Nitrogen-doped carbon aerogel synthesis by solvothermal gelation for supercapacitor application. J. Solid State Electrochem. 26(12), 2829–2839 (2022)CrossRef
41.
go back to reference Kaushal, I., Sharma, A.K., Saharan, P., Kumar, V., Duhan, S.: Facile synthesis and electrochemical investigations of tin-doped MnO2/carbon nanotube composites. Carbon Lett. 29(1), 69–79 (2019)CrossRef Kaushal, I., Sharma, A.K., Saharan, P., Kumar, V., Duhan, S.: Facile synthesis and electrochemical investigations of tin-doped MnO2/carbon nanotube composites. Carbon Lett. 29(1), 69–79 (2019)CrossRef
42.
go back to reference Ghosh, M., Vijayakumar, V., Soni, R., Kurungot, S.: A rationally designed self-standing V2O5 electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors. Nanoscale 10(18), 8741–8751 (2018) Ghosh, M., Vijayakumar, V., Soni, R., Kurungot, S.: A rationally designed self-standing V2O5 electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors. Nanoscale 10(18), 8741–8751 (2018)
43.
go back to reference Tanwar, V., Barik, R., Ingole, P.P.: Uniquely designed tungsten oxide nanopetal decorated electropsun PAN nanofiber for a flexible supercapacitor with ultrahigh rate capability and cyclability. ACS Appl. Energy Mater. 5(2), 1767–1780 (2022)CrossRef Tanwar, V., Barik, R., Ingole, P.P.: Uniquely designed tungsten oxide nanopetal decorated electropsun PAN nanofiber for a flexible supercapacitor with ultrahigh rate capability and cyclability. ACS Appl. Energy Mater. 5(2), 1767–1780 (2022)CrossRef
Metadata
Title
Nanocomposites of Carbon for Supercapacitors
Authors
Biraj Kanta Satpathy
Agni Kumar Biswal
Rasmita Barik
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_15