Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Nanofibers and Biofilm in Materials Science

Authors : Hideyuki Kanematsu, Dana M. Barry, Hajime Ikegai, Yoshimitsu Mizunoe, Michiko Yoshitake

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter biofilms are introduced. Also their relationship with nanofibers is described from the viewpoint of materials science. To start, the background information for this topic is presented and explained. Also we show how biofilm causes industrial problems. The relationships of biofilms to nanofibers are classified in two main ways. One of them is the bacterial nanofiber which they produce by themselves. The other refers to the role of the fibers. A fiber seems to control the shape of biofilms which the aggregation of bacteria could produce. On the other hand, another fiber could play an important role for the attachment of bacteria onto material surfaces. Therefore, all of the mentioned examples would lead to the surface phenomena occurring on material surfaces. Finally, we present and describe a polymer brush coating as a countermeasure against biofilm formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298(5): 504–520CrossRef Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298(5): 504–520CrossRef
2.
go back to reference Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15): 2223–2253CrossRef Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15): 2223–2253CrossRef
3.
go back to reference Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35(2–3):151–160CrossRef Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35(2–3):151–160CrossRef
4.
go back to reference Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRef Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRef
5.
go back to reference Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221CrossRef Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221CrossRef
6.
go back to reference Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150CrossRef Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150CrossRef
7.
go back to reference Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5):1153–1158CrossRef Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5):1153–1158CrossRef
8.
go back to reference Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19(6):1231–1238CrossRef Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19(6):1231–1238CrossRef
9.
go back to reference Characklis WG, Marshall KC (eds) (1990) Biofilms. Wiley, New York Characklis WG, Marshall KC (eds) (1990) Biofilms. Wiley, New York
10.
go back to reference Doyle RJ (1999) Biofilms, Methods in enzymology. Academic, San Diego, p xxxvii, 720 p Doyle RJ (1999) Biofilms, Methods in enzymology. Academic, San Diego, p xxxvii, 720 p
11.
go back to reference Lappin-Scott HM, Costerton JW (2003) Microbial biofilms (Biotechnology research). Cambridge University Press, Cambridge, UK, p 328 Lappin-Scott HM, Costerton JW (2003) Microbial biofilms (Biotechnology research). Cambridge University Press, Cambridge, UK, p 328
12.
go back to reference Percival SL, Malic S, Cruz H, Williams DW (2011) Introduction to biofilms. In: Percival SL (ed) Biofilms and veterinary medicine. Springer, Berlin/Heidelberg, pp 41–68CrossRef Percival SL, Malic S, Cruz H, Williams DW (2011) Introduction to biofilms. In: Percival SL (ed) Biofilms and veterinary medicine. Springer, Berlin/Heidelberg, pp 41–68CrossRef
13.
go back to reference Lear G, Lewis G (2012) Microbial biofilms. Caister Academic Poole, the UK Lear G, Lewis G (2012) Microbial biofilms. Caister Academic Poole, the UK
14.
go back to reference Lewandowski Z, Beyenal H (eds) (2014) Fundamentals of biofilm research, 2nd edn. CRC Press, Boca Raton Lewandowski Z, Beyenal H (eds) (2014) Fundamentals of biofilm research, 2nd edn. CRC Press, Boca Raton
15.
go back to reference Kanematsu H, Barry DM (2015) Biofilm and materials science. Springer, New York, p 196 Kanematsu H, Barry DM (2015) Biofilm and materials science. Springer, New York, p 196
16.
go back to reference McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P (2003) Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69(1):177–185CrossRef McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P (2003) Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69(1):177–185CrossRef
17.
go back to reference Prakash B, Veeregowda B, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 85:1299–1307 Prakash B, Veeregowda B, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 85:1299–1307
18.
go back to reference Rayner J, Veeh R, Flood J (2004) Prevalence of microbial biofilms on selected fresh produce and household surfaces. Int J Food Microbiol 95(1):29–39CrossRef Rayner J, Veeh R, Flood J (2004) Prevalence of microbial biofilms on selected fresh produce and household surfaces. Int J Food Microbiol 95(1):29–39CrossRef
19.
go back to reference Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957CrossRef Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957CrossRef
20.
go back to reference Eboigbodin KE, Seth A, Biggs CA (2008) A review of biofilms in domestic plumbing. Am Water Works Assoc J 100(10):131CrossRef Eboigbodin KE, Seth A, Biggs CA (2008) A review of biofilms in domestic plumbing. Am Water Works Assoc J 100(10):131CrossRef
21.
go back to reference Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056CrossRef Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056CrossRef
22.
go back to reference Kim H, Bang J, Beuchat LR, Ryu J-H (2008) Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities. J Food Prot 71(5):940–945CrossRef Kim H, Bang J, Beuchat LR, Ryu J-H (2008) Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities. J Food Prot 71(5):940–945CrossRef
23.
go back to reference Neth K, Girard D, Albrecht JA (2008) Determination of biofilms on plastic cutting boards. Rurals 3(1):5 Neth K, Girard D, Albrecht JA (2008) Determination of biofilms on plastic cutting boards. Rurals 3(1):5
24.
go back to reference Gupta S (2012) Escherichia coli O157: H7 control in nonintact meat products and inhibition of Listeria monocytogenes biofilms on kitchen surfaces. University Press of Colorado, Louisville, the USA Gupta S (2012) Escherichia coli O157: H7 control in nonintact meat products and inhibition of Listeria monocytogenes biofilms on kitchen surfaces. University Press of Colorado, Louisville, the USA
25.
go back to reference Kazda, M, Zak M, Bengelsdorf F (2012) Effects of additional biofilm carriers on anaerobic digestion of food waste: results from laboratory experiments and a full-scale application. “Anaerobic Digestion of Solid Biomass and Biowaste”, International Symposium, February 2012, Berlin Kazda, M, Zak M, Bengelsdorf F (2012) Effects of additional biofilm carriers on anaerobic digestion of food waste: results from laboratory experiments and a full-scale application. “Anaerobic Digestion of Solid Biomass and Biowaste”, International Symposium, February 2012, Berlin
26.
go back to reference Rossi EM, Scapin D, Tondo EC (2013) Survival and transfer of microorganisms from kitchen sponges to surfaces of stainless steel and polyethylene. J Infect Dev Ctries 7(03):229–234CrossRef Rossi EM, Scapin D, Tondo EC (2013) Survival and transfer of microorganisms from kitchen sponges to surfaces of stainless steel and polyethylene. J Infect Dev Ctries 7(03):229–234CrossRef
27.
go back to reference Buse HY, Lu J, Lu X, Mou X, Ashbolt NJ (2014) Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS Microbiol Ecol 88(2):280–295CrossRef Buse HY, Lu J, Lu X, Mou X, Ashbolt NJ (2014) Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS Microbiol Ecol 88(2):280–295CrossRef
28.
go back to reference Chern EC, King D, Haugland R, Pfaller S (2015) Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. Intracellulare, and M. Avium subspecies paratuberculosis in drinking water biofilms. J Water Health 13(1):131–139CrossRef Chern EC, King D, Haugland R, Pfaller S (2015) Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. Intracellulare, and M. Avium subspecies paratuberculosis in drinking water biofilms. J Water Health 13(1):131–139CrossRef
29.
go back to reference Rueda J, Piamonte C, Zea M, Moreno D, Triana L, Martínez J, Lemus M, Rodríguez Susa M (2015) B. cereus and A. hydrophila in biofilm-water drinking household network IWA Specialized Conference “Biofilms in drinking water systems from treatment to tap’, August, 2015, Arosa, Switzerland Rueda J, Piamonte C, Zea M, Moreno D, Triana L, Martínez J, Lemus M, Rodríguez Susa M (2015) B. cereus and A. hydrophila in biofilm-water drinking household network IWA Specialized Conference “Biofilms in drinking water systems from treatment to tap’, August, 2015, Arosa, Switzerland
30.
go back to reference Honda JR, Hasan NA, Davidson RM, Williams MD, Epperson LE, Reynolds PR, Smith T, Iakhiaeva E, Bankowski MJ, Wallace RJ Jr (2016) Environmental nontuberculous mycobacteria in the Hawaiian Islands. PLoS Negl Trop Dis 10(10):e0005068CrossRef Honda JR, Hasan NA, Davidson RM, Williams MD, Epperson LE, Reynolds PR, Smith T, Iakhiaeva E, Bankowski MJ, Wallace RJ Jr (2016) Environmental nontuberculous mycobacteria in the Hawaiian Islands. PLoS Negl Trop Dis 10(10):e0005068CrossRef
31.
go back to reference Storey M, Ashbolt N (2001) Persistence of two model enteric viruses (B40-8 and MS-2 bacteriophages) in water distribution pipe biofilms. Water Sci Technol 43:133–138CrossRef Storey M, Ashbolt N (2001) Persistence of two model enteric viruses (B40-8 and MS-2 bacteriophages) in water distribution pipe biofilms. Water Sci Technol 43:133–138CrossRef
32.
go back to reference Hunter PR, Colford JM, Lechevallier MW, Binder S, Berger PS (2001) Waterborne diseases. Emerg Infect Dis 7:544CrossRef Hunter PR, Colford JM, Lechevallier MW, Binder S, Berger PS (2001) Waterborne diseases. Emerg Infect Dis 7:544CrossRef
33.
go back to reference Storey M, Ashbolt N (2002) A comparison of methods and models for the analysis of water distribution pipe biofilms. Water Sci Technol Water Supply 2:73–80CrossRef Storey M, Ashbolt N (2002) A comparison of methods and models for the analysis of water distribution pipe biofilms. Water Sci Technol Water Supply 2:73–80CrossRef
34.
go back to reference Storey M, Ashbolt N (2003) A risk model for enteric virus accumulation and release from recycled water distribution pipe biofilms. Water Sci Technol Water Supply 3:93–100CrossRef Storey M, Ashbolt N (2003) A risk model for enteric virus accumulation and release from recycled water distribution pipe biofilms. Water Sci Technol Water Supply 3:93–100CrossRef
35.
go back to reference Storey M, Ashbolt N (2003) Enteric virions and microbial biofilms-a secondary source of public health concern? Water Sci Technol 48:97–104CrossRef Storey M, Ashbolt N (2003) Enteric virions and microbial biofilms-a secondary source of public health concern? Water Sci Technol 48:97–104CrossRef
36.
go back to reference Jang A, Szabo J, Hosni AA, Coughlin M, Bishop PL (2006) Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection. Appl Microbiol Biotechnol 72:368–376CrossRef Jang A, Szabo J, Hosni AA, Coughlin M, Bishop PL (2006) Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection. Appl Microbiol Biotechnol 72:368–376CrossRef
37.
go back to reference Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12:122CrossRef Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12:122CrossRef
38.
go back to reference Bomo A-M, Storey M, Ashbolt N (2004) Detection, integration and persistence of aeromonads in water distribution pipe biofilms. J Water Health 2:83–96CrossRef Bomo A-M, Storey M, Ashbolt N (2004) Detection, integration and persistence of aeromonads in water distribution pipe biofilms. J Water Health 2:83–96CrossRef
39.
go back to reference Rajagopal S, Jenner HA, Venugopalan VP (eds) (2012) Operational and environmental consequences of large industrial cooling water system. Springer, New York/Dordrecht/Heidelberg/London Rajagopal S, Jenner HA, Venugopalan VP (eds) (2012) Operational and environmental consequences of large industrial cooling water system. Springer, New York/Dordrecht/Heidelberg/London
40.
go back to reference Flemming HC (2002) Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640CrossRef Flemming HC (2002) Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640CrossRef
41.
go back to reference Flemming H-C, Geesey GG (1991) Biofouling and biocorrosion in industrial water systems: proceedings of the International Workshop on Industrial Biofouling and Biocorrosion, Stuttgart, 13–14 Sept 1990. Springer, Berlin/New YorkCrossRef Flemming H-C, Geesey GG (1991) Biofouling and biocorrosion in industrial water systems: proceedings of the International Workshop on Industrial Biofouling and Biocorrosion, Stuttgart, 13–14 Sept 1990. Springer, Berlin/New YorkCrossRef
42.
go back to reference Geesey GG, Lewandowski Z, Flemming H-C (1994) Biofouling and biocorrosion in industrial water systems. Lewis Publishers, Boca Raton Geesey GG, Lewandowski Z, Flemming H-C (1994) Biofouling and biocorrosion in industrial water systems. Lewis Publishers, Boca Raton
43.
go back to reference Heitz E, Flemming H-C, Sand W (1996) Microbially influenced corrosion of materials: scientific and engineering aspects. Springer, Berlin/New YorkCrossRef Heitz E, Flemming H-C, Sand W (1996) Microbially influenced corrosion of materials: scientific and engineering aspects. Springer, Berlin/New YorkCrossRef
44.
45.
go back to reference Lindsay D, Von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325CrossRef Lindsay D, Von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325CrossRef
46.
go back to reference Walker J, Jhutty A, Parks S, Wills C, Copley V, Turton J, Hoffman P, Bennett A (2014) Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. J Hosp Infect 86:16–23CrossRef Walker J, Jhutty A, Parks S, Wills C, Copley V, Turton J, Hoffman P, Bennett A (2014) Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. J Hosp Infect 86:16–23CrossRef
47.
go back to reference Nicolle LE (2014) Catheter associated urinary tract infections. Antimicrob Resist Infect Control 3:23CrossRef Nicolle LE (2014) Catheter associated urinary tract infections. Antimicrob Resist Infect Control 3:23CrossRef
48.
go back to reference Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, Mcdonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455CrossRef Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, Mcdonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455CrossRef
49.
go back to reference Karpanen T, Worthington T, Hendry E, Conway BR, Lambert PA (2008) Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother 62:1031–1036CrossRef Karpanen T, Worthington T, Hendry E, Conway BR, Lambert PA (2008) Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother 62:1031–1036CrossRef
50.
go back to reference Ryder MA (2005) Catheter-related infections: it’s all about biofilm. Top Adv Pract Nurs J 5:1–6 Ryder MA (2005) Catheter-related infections: it’s all about biofilm. Top Adv Pract Nurs J 5:1–6
51.
go back to reference Murphy CN, Clegg S (2012) Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 7:991–1002CrossRef Murphy CN, Clegg S (2012) Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 7:991–1002CrossRef
52.
go back to reference Curran E (2001) Reducing the risk of healthcare-acquired infection. Nurs Stand (through 2013) 16:45CrossRef Curran E (2001) Reducing the risk of healthcare-acquired infection. Nurs Stand (through 2013) 16:45CrossRef
53.
go back to reference Dunlop P, Sheeran C, Byrne J, Mcmahon M, Boyle M, Mcguigan K (2010) Inactivation of clinically relevant pathogens by photocatalytic coatings. J Photochem Photobiol A Chem 216:303–310CrossRef Dunlop P, Sheeran C, Byrne J, Mcmahon M, Boyle M, Mcguigan K (2010) Inactivation of clinically relevant pathogens by photocatalytic coatings. J Photochem Photobiol A Chem 216:303–310CrossRef
54.
go back to reference Loveday H, Wilson J, Kerr K, Pitchers R, Walker J, Browne J (2014) Association between healthcare water systems and Pseudomonas aeruginosa infections: a rapid systematic review. J Hosp Infect 86:7–15CrossRef Loveday H, Wilson J, Kerr K, Pitchers R, Walker J, Browne J (2014) Association between healthcare water systems and Pseudomonas aeruginosa infections: a rapid systematic review. J Hosp Infect 86:7–15CrossRef
55.
go back to reference Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14(1):105–119CrossRef Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14(1):105–119CrossRef
56.
go back to reference Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48(3):424–434CrossRef Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48(3):424–434CrossRef
57.
go back to reference van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54(1):75–87 van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54(1):75–87
58.
go back to reference Kanematsu H, Barry DM, Ikegai H, Yoshitake M, Mizunoe Y (2017) Biofilm evaluation methods outside body to inside – problem presentations for the future. Med Res Arch 5(8):1–17 Kanematsu H, Barry DM, Ikegai H, Yoshitake M, Mizunoe Y (2017) Biofilm evaluation methods outside body to inside – problem presentations for the future. Med Res Arch 5(8):1–17
59.
go back to reference Telegdi J, Keresztes Z, Pálinkás G, Kálmán E, Sand W (1998) Microbially influenced corrosion visualized by atomic force microscopy. Appl Phys A Mater Sci Process 66:S639–S642CrossRef Telegdi J, Keresztes Z, Pálinkás G, Kálmán E, Sand W (1998) Microbially influenced corrosion visualized by atomic force microscopy. Appl Phys A Mater Sci Process 66:S639–S642CrossRef
60.
go back to reference El Din AS, Saber TMH, Hammoud AA (1996) Biofilm formation on stainless steels in Arabian gulf water. Desalination 107(3):251–264CrossRef El Din AS, Saber TMH, Hammoud AA (1996) Biofilm formation on stainless steels in Arabian gulf water. Desalination 107(3):251–264CrossRef
61.
go back to reference LeChevallier MW, Lowry CD, Lee RG, Gibbon DL (1993) Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J Am Water Works Assoc 85:111–123CrossRef LeChevallier MW, Lowry CD, Lee RG, Gibbon DL (1993) Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J Am Water Works Assoc 85:111–123CrossRef
62.
63.
64.
go back to reference Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device – related infections. J Clin Pharmacol 39(9):887–898CrossRef Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device – related infections. J Clin Pharmacol 39(9):887–898CrossRef
65.
go back to reference Jass J, Surman S, Walker JT (2003) Microbial biofilms in medicine. In: Medical biofilms: detection, prevention and control. Wiley, Chichester, pp 1–28CrossRef Jass J, Surman S, Walker JT (2003) Microbial biofilms in medicine. In: Medical biofilms: detection, prevention and control. Wiley, Chichester, pp 1–28CrossRef
66.
go back to reference Wolcott RD, Ehrlich GD (2008) Biofilms and chronic infections. JAMA 299(22):2682–2684CrossRef Wolcott RD, Ehrlich GD (2008) Biofilms and chronic infections. JAMA 299(22):2682–2684CrossRef
67.
go back to reference Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11(3):223–226CrossRef Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11(3):223–226CrossRef
68.
go back to reference Iverson WP (1987) Microbial corrosion of metals. Adv Appl Microbiol 32:1–36CrossRef Iverson WP (1987) Microbial corrosion of metals. Adv Appl Microbiol 32:1–36CrossRef
69.
go back to reference Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76CrossRef Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76CrossRef
70.
go back to reference Little BJ, Mansfelt FB, Arps PJ, Earthman JC (2007) Microbiologically influenced corrosion. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef Little BJ, Mansfelt FB, Arps PJ, Earthman JC (2007) Microbiologically influenced corrosion. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef
71.
go back to reference Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169 Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169
72.
go back to reference Little B, Wagner P, Mansfeld F (1991) Microbiologically influenced corrosion of metals and alloys. Int Mater Rev 36(1):253–272CrossRef Little B, Wagner P, Mansfeld F (1991) Microbiologically influenced corrosion of metals and alloys. Int Mater Rev 36(1):253–272CrossRef
73.
go back to reference Javaherdashti R (1999) A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future. Anti-Corros Methods Mater 46(3):173–180CrossRef Javaherdashti R (1999) A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future. Anti-Corros Methods Mater 46(3):173–180CrossRef
74.
go back to reference Little BJ, Ray RI, Pope RK (2000) Relationship between corrosion and the biological sulfur cycle: a review. Corrosion 56(4):433–443CrossRef Little BJ, Ray RI, Pope RK (2000) Relationship between corrosion and the biological sulfur cycle: a review. Corrosion 56(4):433–443CrossRef
75.
go back to reference Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50(4):1169–1183CrossRef Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50(4):1169–1183CrossRef
76.
go back to reference Angell P, Urbanic K (2000) Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corros Sci 42(5):897–912CrossRef Angell P, Urbanic K (2000) Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corros Sci 42(5):897–912CrossRef
77.
go back to reference Xu D, Gu T (2011) Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Corrosion/2011 paper. p 11426 Xu D, Gu T (2011) Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Corrosion/2011 paper. p 11426
78.
go back to reference Videla HA, Characklis WG (1992) Biofouling and microbially influenced corrosion. Int Biodeter Biodegr 29(3–4):195–212CrossRef Videla HA, Characklis WG (1992) Biofouling and microbially influenced corrosion. Int Biodeter Biodegr 29(3–4):195–212CrossRef
79.
go back to reference Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2(2):288–356CrossRef Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2(2):288–356CrossRef
80.
go back to reference Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Am Assoc Adv Sci 284(5418):1318–1322 Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Am Assoc Adv Sci 284(5418):1318–1322
81.
go back to reference Kanematsu H, Hirai N, Miura Y, Tanaka M, Kogo T, Itoh H (2013) Various metals from water by biofilm from an ambient germs in a reaction container. In: Materials science and technology, Montreal, pp 2154–2161 MS & T 2013 Kanematsu H, Hirai N, Miura Y, Tanaka M, Kogo T, Itoh H (2013) Various metals from water by biofilm from an ambient germs in a reaction container. In: Materials science and technology, Montreal, pp 2154–2161 MS & T 2013
82.
go back to reference Braithwaite CJ, Taylor JD, Glover EA (2000) Marine carbonate cements, biofilms, Biomineralization, and Skeletogeneis: some bivalves do it all. J Sediment Res 70(5):1129–1138CrossRef Braithwaite CJ, Taylor JD, Glover EA (2000) Marine carbonate cements, biofilms, Biomineralization, and Skeletogeneis: some bivalves do it all. J Sediment Res 70(5):1129–1138CrossRef
83.
go back to reference Reith F, Rogers SL, McPhail DC, Webb D (2006) Biomineralization of gold: biofilms on Bacterioform gold. Science 313(July):233–236CrossRef Reith F, Rogers SL, McPhail DC, Webb D (2006) Biomineralization of gold: biofilms on Bacterioform gold. Science 313(July):233–236CrossRef
84.
go back to reference Gillan DC, De Ridder C (2001) Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia). Biomineralization, bioaccumulation, and inference of paleoenvironments. Chem Geol 177(3):371–379CrossRef Gillan DC, De Ridder C (2001) Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia). Biomineralization, bioaccumulation, and inference of paleoenvironments. Chem Geol 177(3):371–379CrossRef
85.
go back to reference Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348CrossRef Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348CrossRef
86.
go back to reference Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375CrossRef Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375CrossRef
87.
go back to reference Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10(10):2505–2514CrossRef Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10(10):2505–2514CrossRef
88.
go back to reference Hirai N (2015) Energy problems – fuel cell. In: Kanematsu H, Barry DM (eds) Biofilm and materials science. Springer International Publishing, New York, pp 125–133 Hirai N (2015) Energy problems – fuel cell. In: Kanematsu H, Barry DM (eds) Biofilm and materials science. Springer International Publishing, New York, pp 125–133
89.
go back to reference Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57(1):77–100CrossRef Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57(1):77–100CrossRef
90.
go back to reference Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19CrossRef Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19CrossRef
91.
92.
go back to reference An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res A 43(3):338–348CrossRef An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res A 43(3):338–348CrossRef
93.
go back to reference Reid G, Sobel JD (1987) Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 9(3):470–487CrossRef Reid G, Sobel JD (1987) Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 9(3):470–487CrossRef
94.
go back to reference Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56(1):289–314CrossRef Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56(1):289–314CrossRef
95.
go back to reference Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613–635CrossRef Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613–635CrossRef
96.
go back to reference Lee GM, Bishop P (2013) Microbiology: and infection control for health professional, 5th edn. Pearson Australia, Frenchs Forest Lee GM, Bishop P (2013) Microbiology: and infection control for health professional, 5th edn. Pearson Australia, Frenchs Forest
97.
go back to reference Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292(3–4):195–205CrossRef Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292(3–4):195–205CrossRef
98.
go back to reference Iida K-i, Mizunoe Y, Wai SN, Yoshida S-i (2001) Type 1 fimbriation and its phase Swiching in Diarrheagenic Escherichia coli strains. Clin Diagn Lab Immunol 8(3):489–495 Iida K-i, Mizunoe Y, Wai SN, Yoshida S-i (2001) Type 1 fimbriation and its phase Swiching in Diarrheagenic Escherichia coli strains. Clin Diagn Lab Immunol 8(3):489–495
99.
go back to reference Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. In: Romeo T (ed) Bacterial biofilms. Springer, Berlin/Heidelberg, pp 249–289CrossRef Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. In: Romeo T (ed) Bacterial biofilms. Springer, Berlin/Heidelberg, pp 249–289CrossRef
100.
go back to reference Kikuchi T, Mizunoe Y, Takade A, Naito S (2005) Curli fibers are required for development of biofilm architecture in escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49(9):875–884CrossRef Kikuchi T, Mizunoe Y, Takade A, Naito S (2005) Curli fibers are required for development of biofilm architecture in escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49(9):875–884CrossRef
101.
go back to reference Prigent Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2(4):450–464CrossRef Prigent Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2(4):450–464CrossRef
102.
go back to reference Lee HJ, Michielsen S (2006) Lotus effect: superhydrophobicity. J Text Inst 97(5):455–462CrossRef Lee HJ, Michielsen S (2006) Lotus effect: superhydrophobicity. J Text Inst 97(5):455–462CrossRef
103.
go back to reference Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9): 3517–3519CrossRef Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9): 3517–3519CrossRef
104.
go back to reference Gao L, McCarthy TJ (2006) The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22(7):2966–2967CrossRef Gao L, McCarthy TJ (2006) The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22(7):2966–2967CrossRef
105.
go back to reference Wolansky G, Marmur A (1999) Apparent contact angles on rough surfaces: the Wenzel equation revisited. Colloids Surf A Physicochem Eng Asp 156(1):381–388CrossRef Wolansky G, Marmur A (1999) Apparent contact angles on rough surfaces: the Wenzel equation revisited. Colloids Surf A Physicochem Eng Asp 156(1):381–388CrossRef
106.
go back to reference Shirtcliffe NJ, McHale G, Newton MI, Chabrol G, Perry CC (2004) Dual scale roughness produces unusually water repellent surfaces. Adv Mater Process 16(21):1929–1932CrossRef Shirtcliffe NJ, McHale G, Newton MI, Chabrol G, Perry CC (2004) Dual scale roughness produces unusually water repellent surfaces. Adv Mater Process 16(21):1929–1932CrossRef
107.
go back to reference Erbil HY, Cansoy CE (2009) Range of applicability of the Wenzel and Cassie−Baxter equations for superhydrophobic surfaces. Langmuir 25(24):14135–14145CrossRef Erbil HY, Cansoy CE (2009) Range of applicability of the Wenzel and Cassie−Baxter equations for superhydrophobic surfaces. Langmuir 25(24):14135–14145CrossRef
108.
go back to reference Lyklema J (2005) Fundamentals of interface and colloid science: soft colloids, vol 5. Academic press, Cambridge, MA Lyklema J (2005) Fundamentals of interface and colloid science: soft colloids, vol 5. Academic press, Cambridge, MA
109.
110.
go back to reference Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28(18):7212–7222CrossRef Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28(18):7212–7222CrossRef
111.
go back to reference Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WT (2008) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1): 71–77CrossRef Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WT (2008) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1): 71–77CrossRef
112.
go back to reference Yang WJ, Cai T, Neoh KG, Kang ET, Dickinson GH, Teo SLM, Rittschof D (2011) Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Langmuir 27(11):7065–7076CrossRef Yang WJ, Cai T, Neoh KG, Kang ET, Dickinson GH, Teo SLM, Rittschof D (2011) Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Langmuir 27(11):7065–7076CrossRef
113.
go back to reference Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Brooks DE (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909CrossRef Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Brooks DE (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909CrossRef
114.
go back to reference Ayres N (2010) Polymer brushes: applications in biomaterials and nanotechnology. Polym Chem 1(6):769–777CrossRef Ayres N (2010) Polymer brushes: applications in biomaterials and nanotechnology. Polym Chem 1(6):769–777CrossRef
115.
go back to reference Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsuji Y (2011) Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush. Adv Mater 23:4868–4872CrossRef Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsuji Y (2011) Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush. Adv Mater 23:4868–4872CrossRef
116.
go back to reference Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsuji Y (2011) Novel solid-state polymer electrolyte of colloidal Cyrstal decorated with ionic-liquid polymer brush – supporting information. Adv Mater 23:1–5CrossRef Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsuji Y (2011) Novel solid-state polymer electrolyte of colloidal Cyrstal decorated with ionic-liquid polymer brush – supporting information. Adv Mater 23:1–5CrossRef
117.
go back to reference Arafune H, Kamijo T, Morinaga T, Honma S, Sato T, Tsuji Y (2015) A robust lubrication system using an ionic liquid polymer brush. Adv Mater Interfaces 2:1–5CrossRef Arafune H, Kamijo T, Morinaga T, Honma S, Sato T, Tsuji Y (2015) A robust lubrication system using an ionic liquid polymer brush. Adv Mater Interfaces 2:1–5CrossRef
118.
go back to reference Morinaga T, Honma S, Ishizuka T, Kamijo T, Sato T, Tsuji Y (2016) Synthesis of monodisperse silica particles grafted with concentrated ionic liquid-type polymer brushes by surface-initiated atom transfer radical polymerization for use as a solid state polymer electrolyte. Polymers 8:146–159CrossRef Morinaga T, Honma S, Ishizuka T, Kamijo T, Sato T, Tsuji Y (2016) Synthesis of monodisperse silica particles grafted with concentrated ionic liquid-type polymer brushes by surface-initiated atom transfer radical polymerization for use as a solid state polymer electrolyte. Polymers 8:146–159CrossRef
119.
go back to reference Oizumi A, Kanematsu H, Sato T, Kamijo T, Honma A (2017) Some bacterial biofilms formation on a polymer brush produced on glass substrate. In: The 48th annual meeting of union of chemistry-related societies in Chubu Area, Japan, 12 Nov 2017, Gifu Oizumi A, Kanematsu H, Sato T, Kamijo T, Honma A (2017) Some bacterial biofilms formation on a polymer brush produced on glass substrate. In: The 48th annual meeting of union of chemistry-related societies in Chubu Area, Japan, 12 Nov 2017, Gifu
120.
go back to reference Kanematsu H, Sato T, Kamijo T, Honma S, Oizumi A, Umeki S, Ogawa A, Hirai N, Kogo T, Kuroda D, Ikegai H, Mizunoe Y (2018) Biofilm formation behavior on polymer brush surfaces by E. coli and S. pidermidis. In: 2018 TMS annual meeting & exhibition. The Minerals, Metals & Materials Society, Phoenix Kanematsu H, Sato T, Kamijo T, Honma S, Oizumi A, Umeki S, Ogawa A, Hirai N, Kogo T, Kuroda D, Ikegai H, Mizunoe Y (2018) Biofilm formation behavior on polymer brush surfaces by E. coli and S. pidermidis. In: 2018 TMS annual meeting & exhibition. The Minerals, Metals & Materials Society, Phoenix
121.
go back to reference Kanematsu H, Oizumi A, Sato T, Kamijo T, Honma S, Barry DM, Hirai N, Ogawa A, Kogo T, Daisuke K, Tsunashima K (2018) Polymer brush made by Ionic Liquids and the inhibition effects for biofilm formation. In: The 233rd ECS meeting. The Electrochemical Society, Seattle Kanematsu H, Oizumi A, Sato T, Kamijo T, Honma S, Barry DM, Hirai N, Ogawa A, Kogo T, Daisuke K, Tsunashima K (2018) Polymer brush made by Ionic Liquids and the inhibition effects for biofilm formation. In: The 233rd ECS meeting. The Electrochemical Society, Seattle
Metadata
Title
Nanofibers and Biofilm in Materials Science
Authors
Hideyuki Kanematsu
Dana M. Barry
Hajime Ikegai
Yoshimitsu Mizunoe
Michiko Yoshitake
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_7

Premium Partners