Skip to main content
Top

2019 | OriginalPaper | Chapter

Nanofibrillated Cellulose-Based Nanocomposites

Authors : Hind Abdellaoui, Marya Raji, Hamid Essabir, Rachid Bouhfid, Abou el kacem Qaiss

Published in: Bio-based Polymers and Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanofibrillated cellulose (NFC), a form of nanocellulose, is currently recommended to be utilized in a wide of industrial applications like food packaging, printing, paper, biomedical, and nanocomposite materials. Their exploitation is not a coincidence, but a fruitful result of many studies showing that NFCs have exciting characteristics such as renewable, sustainable, recyclable, the high length-to-diameter ratio (aspect ratio), and high mechanical properties at the nanometric scale. This chapter is a boon to show the added value of NFCs and their applications in nanocomposites materials. To do this, this content deals with two parts: the first one focuses on the extraction of the NFCs from the cellulosic fiber, their structures, and the processes allowing to modify/treated nanocellulose surface to make it compatible with the polymer matrix. In the second part, focused on the manufacturing process of nanocomposites, their properties and the industrial applications are discussed in depth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdellaoui H, Echaabi J (2014) Rheological models for modeling the viscoelastic behavior in liquid composite molding processes (LCM) review. J Reinf Plast Compos 33(8):1–19CrossRef Abdellaoui H, Echaabi J (2014) Rheological models for modeling the viscoelastic behavior in liquid composite molding processes (LCM) review. J Reinf Plast Compos 33(8):1–19CrossRef
go back to reference Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, el kacem Qaiss A (2015a) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113CrossRef Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, el kacem Qaiss A (2015a) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113CrossRef
go back to reference Abdellaoui H, Bouhfid R, Echaabi J, el kacem Qaiss A (2015b) Experimental and modeling study of viscoelastic behaviour of woven dried jute under compressive stress. J Reinf Plast Compos 34(5):405–420CrossRef Abdellaoui H, Bouhfid R, Echaabi J, el kacem Qaiss A (2015b) Experimental and modeling study of viscoelastic behaviour of woven dried jute under compressive stress. J Reinf Plast Compos 34(5):405–420CrossRef
go back to reference Abdellaoui H, Bensalah H, Raji M, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14(2):379–389CrossRef Abdellaoui H, Bensalah H, Raji M, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14(2):379–389CrossRef
go back to reference Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639CrossRef Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639CrossRef
go back to reference Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24CrossRef Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24CrossRef
go back to reference Ait Laaziz S, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R (2017) Bio-composites based on polylactic acid and Argan nut shell: production and properties. Int J Biol Macromol 104:30–42CrossRef Ait Laaziz S, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R (2017) Bio-composites based on polylactic acid and Argan nut shell: production and properties. Int J Biol Macromol 104:30–42CrossRef
go back to reference Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Căşărică A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12(9):968–975CrossRef Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Căşărică A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12(9):968–975CrossRef
go back to reference Alwani MS, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218–230 Alwani MS, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218–230
go back to reference Araújo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775CrossRef Araújo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775CrossRef
go back to reference Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442CrossRef Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442CrossRef
go back to reference Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240CrossRef Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240CrossRef
go back to reference Benyahia A, Merrouche A, Rokbi M, Kouadri Z (2013) Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated polyester-fiber Alfa abstract. 21ème Congrès Français de Mécanique, 1–6 Benyahia A, Merrouche A, Rokbi M, Kouadri Z (2013) Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated polyester-fiber Alfa abstract. 21ème Congrès Français de Mécanique, 1–6
go back to reference Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169CrossRef
go back to reference Doktor G, Fakult N, Ashraf H, Asran S, Sayed A, Gutachter K, Michler GH (2011) Electrospinning of polymeric nanofibers and nanocomposite materials: fabrication, physicochemical characterization and medical applications Doktor G, Fakult N, Ashraf H, Asran S, Sayed A, Gutachter K, Michler GH (2011) Electrospinning of polymeric nanofibers and nanocomposite materials: fabrication, physicochemical characterization and medical applications
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef
go back to reference El Makssoudi A, Abdellaoui H, El Ouatib R, Tahiri M (2014) Development of composite materials based on expanded perlite and plastic wastes. Mechanic-chemical properties. In: 2nd annual international conference on chemistry, chemical engineering and chemical process (CCECP 2014), pp 38–46 El Makssoudi A, Abdellaoui H, El Ouatib R, Tahiri M (2014) Development of composite materials based on expanded perlite and plastic wastes. Mechanic-chemical properties. In: 2nd annual international conference on chemistry, chemical engineering and chemical process (CCECP 2014), pp 38–46
go back to reference Erbas Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohyd Polym 127:381–389CrossRef Erbas Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohyd Polym 127:381–389CrossRef
go back to reference Essabir H, Hilali E, Elgharad A, El Minor H, Imad A, Elamraoui A, Al Gaoudi O (2013) Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Des 49:442–448CrossRef Essabir H, Hilali E, Elgharad A, El Minor H, Imad A, Elamraoui A, Al Gaoudi O (2013) Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Des 49:442–448CrossRef
go back to reference Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016a) Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohyd Polym 143:70–83CrossRef Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016a) Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohyd Polym 143:70–83CrossRef
go back to reference Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016b) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43CrossRef Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016b) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43CrossRef
go back to reference Essabir H, Raji M, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J Mater Sci Mater Electron 28(22):17120–17130 Essabir H, Raji M, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J Mater Sci Mater Electron 28(22):17120–17130
go back to reference Farias D, Cordeiro R, Canabarro BR, Scholz S, Sim RA (2017) Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites [João Gabriel Guimarães de Farias a, Rafael Cordeiro Cavalcante a]. Carbohydr Polym 165:429–436 Farias D, Cordeiro R, Canabarro BR, Scholz S, Sim RA (2017) Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites [João Gabriel Guimarães de Farias a, Rafael Cordeiro Cavalcante a]. Carbohydr Polym 165:429–436
go back to reference Gacitua EW, Ballerini AA, Jinwen Z (2005) Polymer nanocomposites: synthetic and natural fillers. Maderas Ciencia Y Tecnología 7(3):159–178CrossRef Gacitua EW, Ballerini AA, Jinwen Z (2005) Polymer nanocomposites: synthetic and natural fillers. Maderas Ciencia Y Tecnología 7(3):159–178CrossRef
go back to reference Gantayat S, Rout D, Swain SK (2017) Structural and mechanical properties of functionalized carbon nanofiber/epoxy nanocomposites. Mater Today Proc 4(8):9060–9064CrossRef Gantayat S, Rout D, Swain SK (2017) Structural and mechanical properties of functionalized carbon nanofiber/epoxy nanocomposites. Mater Today Proc 4(8):9060–9064CrossRef
go back to reference Grumezescu AM (2017). Food packaging nanotechnology in the agri-food industry, vol 7. Elsevier Inc, Netherlands, p 805 Grumezescu AM (2017). Food packaging nanotechnology in the agri-food industry, vol 7. Elsevier Inc, Netherlands, p 805
go back to reference Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers. In: IOP conference series: materials science and engineering, vol 149. pp 12091CrossRef Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers. In: IOP conference series: materials science and engineering, vol 149. pp 12091CrossRef
go back to reference Hakeem KR, Mohammad J, Alothman Othman Y (2011) Agricultural biomass based potential materials. Springer International Publishing, Switzerland Hakeem KR, Mohammad J, Alothman Othman Y (2011) Agricultural biomass based potential materials. Springer International Publishing, Switzerland
go back to reference Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Biores Technol 102:2910–2915CrossRef Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Biores Technol 102:2910–2915CrossRef
go back to reference Hamour N, Boukerrou A, Djidjelli H, Maigret JE, Beaugrand J (2015) Effects of MAPP compatibilization and acetylation treatment followed by hydrothermal aging on polypropylene alfa fiber composites. Int J Polym Sci Hamour N, Boukerrou A, Djidjelli H, Maigret JE, Beaugrand J (2015) Effects of MAPP compatibilization and acetylation treatment followed by hydrothermal aging on polypropylene alfa fiber composites. Int J Polym Sci
go back to reference Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modi fi. Powder Technol 207(1–3):296–303CrossRef Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modi fi. Powder Technol 207(1–3):296–303CrossRef
go back to reference Hietala M, Mathew AP, Oksman K (2012) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 1–7 Hietala M, Mathew AP, Oksman K (2012) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 1–7
go back to reference Hoidy WH, Al-mulla EAJ (2013) Study of preparation for co-polymer nanocomposites using PLA/LDPE/CTAB modified clay. Iraqi Nat J Chem 49:61–72 Hoidy WH, Al-mulla EAJ (2013) Study of preparation for co-polymer nanocomposites using PLA/LDPE/CTAB modified clay. Iraqi Nat J Chem 49:61–72
go back to reference Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects: review. Biores Technol 199:103–112CrossRef Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects: review. Biores Technol 199:103–112CrossRef
go back to reference Khalil HPSA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Handbook of polymer nanocomposites. Processing, performance and application: volume C: Polymer nanocomposites of cellulose nanoparticles. Springer, Berlin, pp 475–511 Khalil HPSA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Handbook of polymer nanocomposites. Processing, performance and application: volume C: Polymer nanocomposites of cellulose nanoparticles. Springer, Berlin, pp 475–511
go back to reference Khanam PN, Ponnamma D, AL-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In: Graphene-based polymer nanocomposites in electronics, Springer series on polymer and composite materials, pp 25–47 Khanam PN, Ponnamma D, AL-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In: Graphene-based polymer nanocomposites in electronics, Springer series on polymer and composite materials, pp 25–47
go back to reference Kim H, Hong J, Pyo S (2018) Acoustic characteristics of sound absorbable high performance concrete. Appl Acoust 138(April):171–178CrossRef Kim H, Hong J, Pyo S (2018) Acoustic characteristics of sound absorbable high performance concrete. Appl Acoust 138(April):171–178CrossRef
go back to reference Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873CrossRef Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873CrossRef
go back to reference Kumar R, Obrai S, Sharma A (2011) Chemical modifications of natural fiber for composite material. Pelagia Res Libr 2(4):219–228 Kumar R, Obrai S, Sharma A (2011) Chemical modifications of natural fiber for composite material. Pelagia Res Libr 2(4):219–228
go back to reference Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Compos Sci Technol 70(2):231–239CrossRef Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Compos Sci Technol 70(2):231–239CrossRef
go back to reference Li X, Panigrahi S (2004) Flax fiber-reinforced composites and the effect of chemical treatments on their properties. Appl Eng Agric 25(3):1–11 Li X, Panigrahi S (2004) Flax fiber-reinforced composites and the effect of chemical treatments on their properties. Appl Eng Agric 25(3):1–11
go back to reference Menon MP, Selvakumar R, Kumar PS, Ramakrishna S (2017) Extraction and modification of cellulose nanofibers derived from biomass for environmental application. Roy Soc Chem 7:42750–42773 Menon MP, Selvakumar R, Kumar PS, Ramakrishna S (2017) Extraction and modification of cellulose nanofibers derived from biomass for environmental application. Roy Soc Chem 7:42750–42773
go back to reference Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 52:251–257CrossRef Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 52:251–257CrossRef
go back to reference Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15CrossRef Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15CrossRef
go back to reference Mohkami M, Talaeipour M (2011) Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR analysis. BioResources 6(2):1988–2003 Mohkami M, Talaeipour M (2011) Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR analysis. BioResources 6(2):1988–2003
go back to reference Niazi MBK, Jahan Z, Berg SS, Gregersen ØW (2017) Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohyd Polym 177:258–268CrossRef Niazi MBK, Jahan Z, Berg SS, Gregersen ØW (2017) Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohyd Polym 177:258–268CrossRef
go back to reference Nunna S, Chandra PR, Shrivastava S, Jalan AK (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769CrossRef Nunna S, Chandra PR, Shrivastava S, Jalan AK (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769CrossRef
go back to reference Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574CrossRef Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574CrossRef
go back to reference Qu T, Zhang X, Gu X, Han L, Ji G, Chen X, Xiao W (2017) Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. Am Chem Soc 5:7733–7742 Qu T, Zhang X, Gu X, Han L, Ji G, Chen X, Xiao W (2017) Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. Am Chem Soc 5:7733–7742
go back to reference Raji M, Essabir H, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016) Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with illite clay. Polym Polym Compos 16(2):101–113 Raji M, Essabir H, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016) Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with illite clay. Polym Polym Compos 16(2):101–113
go back to reference Raji M, Essabir H, Bouhfid R, el kacem Qaiss A (2017a) Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. In: Handbook of composites from renewable materials. Wiley, Hoboken, pp 225–252CrossRef Raji M, Essabir H, Bouhfid R, el kacem Qaiss A (2017a) Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. In: Handbook of composites from renewable materials. Wiley, Hoboken, pp 225–252CrossRef
go back to reference Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273CrossRef Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273CrossRef
go back to reference Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828CrossRef Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828CrossRef
go back to reference Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363CrossRef Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363CrossRef
go back to reference Sdrobi A, Darie RN, Totolin M, Cazacu G, Vasile C (2012) Low density polyethylene composites containing cellulose pulp fibers. Compos B Eng 43(4):1873–1880CrossRef Sdrobi A, Darie RN, Totolin M, Cazacu G, Vasile C (2012) Low density polyethylene composites containing cellulose pulp fibers. Compos B Eng 43(4):1873–1880CrossRef
go back to reference Shauddin SM, Shaha CK, Khan MA (2014) Effects of fiber inclusion and γ radiation on physico-mechanical properties of jute caddies reinforced waste polyethylene composite. J Polym Biopolym Phys Chem 2(4):91–97 Shauddin SM, Shaha CK, Khan MA (2014) Effects of fiber inclusion and γ radiation on physico-mechanical properties of jute caddies reinforced waste polyethylene composite. J Polym Biopolym Phys Chem 2(4):91–97
go back to reference Singh TJ, Samanta S (2014) Characterization of natural fiber reinforced composites-bamboo and sisal: a review. IJRET: Int J Res Eng Technol 3(7):187–195 Singh TJ, Samanta S (2014) Characterization of natural fiber reinforced composites-bamboo and sisal: a review. IJRET: Int J Res Eng Technol 3(7):187–195
go back to reference Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A Appl Sci Manuf 39(5):875–886CrossRef Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A Appl Sci Manuf 39(5):875–886CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
go back to reference Solyman WSE, Nagiub HM, Alian NA, Shaker NO, Kandil UF (2017) Synthesis and characterization of phenol/formaldehyde nanocomposites: studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology. J Radiat Res Appl Sci 10(1):72–79 Solyman WSE, Nagiub HM, Alian NA, Shaker NO, Kandil UF (2017) Synthesis and characterization of phenol/formaldehyde nanocomposites: studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology. J Radiat Res Appl Sci 10(1):72–79
go back to reference Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Paper Chem 28(2):216–238 Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Paper Chem 28(2):216–238
go back to reference Stocchi A, Lauke B, Vázquez A, Bernal C (2007) A novel fiber treatment applied to woven jute fabric/vinylester laminates. Compos A Appl Sci Manuf 38(5):1337–1343CrossRef Stocchi A, Lauke B, Vázquez A, Bernal C (2007) A novel fiber treatment applied to woven jute fabric/vinylester laminates. Compos A Appl Sci Manuf 38(5):1337–1343CrossRef
go back to reference Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites: review. Proc Pakistan Acad Sci 44:129–144 Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites: review. Proc Pakistan Acad Sci 44:129–144
go back to reference Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777CrossRef Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777CrossRef
go back to reference Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohyd Polym 136:485–492CrossRef Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohyd Polym 136:485–492CrossRef
go back to reference Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Applied polymer symposium, vol 37. Wiley, New York, pp 815–827 Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Applied polymer symposium, vol 37. Wiley, New York, pp 815–827
go back to reference Vatai G (2010) Separation technologies in the processing of fruit juices. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead Publishing series in food science, technology and nutrition, pp 381–395. Woodhead Publishing Limited, UKCrossRef Vatai G (2010) Separation technologies in the processing of fruit juices. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead Publishing series in food science, technology and nutrition, pp 381–395. Woodhead Publishing Limited, UKCrossRef
go back to reference Vazquez A, Foresti M, Moran J, Cyras V (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application, pp 81–118 Vazquez A, Foresti M, Moran J, Cyras V (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application, pp 81–118
go back to reference Wang W, Sabo RC, Mozuch MD, Kersten P, Jin JYZY (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRef Wang W, Sabo RC, Mozuch MD, Kersten P, Jin JYZY (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRef
go back to reference Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41(7):806–819CrossRef Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41(7):806–819CrossRef
go back to reference Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technol 12(1):52–58CrossRef Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technol 12(1):52–58CrossRef
go back to reference Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef
go back to reference Zari N, Raji M, El Mghari H, Bouhfid R, el kacem Qaiss A (2018) Nanoclay and polymer-based nanocomposites: materials for energy efficiency. In: Polymer-based nanocomposites for energy and environmental applications. Woodhead, UK, pp 75–103CrossRef Zari N, Raji M, El Mghari H, Bouhfid R, el kacem Qaiss A (2018) Nanoclay and polymer-based nanocomposites: materials for energy efficiency. In: Polymer-based nanocomposites for energy and environmental applications. Woodhead, UK, pp 75–103CrossRef
Metadata
Title
Nanofibrillated Cellulose-Based Nanocomposites
Authors
Hind Abdellaoui
Marya Raji
Hamid Essabir
Rachid Bouhfid
Abou el kacem Qaiss
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05825-8_4

Premium Partners