Skip to main content
Top

2019 | OriginalPaper | Chapter

20. Nanofibrous Scaffolds for Tissue Engineering Application

Authors : Sakthivel Nagarajan, S. Narayana Kalkura, Sebastien Balme, Celine Pochat Bohatier, Philippe Miele, Mikhael Bechelany

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Regeneration of damaged or malfunctioning tissues or organs is important goal of tissue engineering. Various techniques such as cell sheet engineering, cell spheroids, scaffold assisted methods and 3D printing of the cells with polymers have been tested in tissue engineering. Among these techniques, scaffold assisted method is extensively employed as it acts as a supporting matrix for the cells, providing suitable microenvironment to facilitate the cell attachment, proliferation and differentiation. In this context, designing scaffolds which mimics extracellular matrix (ECM) is essential to regenerate the damaged tissues and organs. The electrospinning technique is a versatile tool to fabricate ECM mimicking scaffolds. ECMs obtained using this technique are highly desired due to their excellent physical properties such as high surface area. High surface area assists in immobilizing bulk quantity of biomolecules like growth factors, enzymes, and drugs which provide favorable microenvironment to cells. Hence, the electrospinning is a suitable tool in regenerative tissue engineering. This chapter discusses about the importance of electrospun polymer fibers for regeneration of various tissues including bone, cartilage, heart muscles, liver and neural tissues. Influence of properties such as surface chemistry, mechanical properties and porosity on gene expression of stem cell will be addressed. The impact of biomolecule immobilization, electrospun fiber size, fiber orientation and fiber morphology on stem cell differentiation is also discussed. The performance of biopolymer and synthetic degradable polymer based electrospun fibers in tissue engineering will also be briefly reported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng L, Sun X, Zhao X, Wang L, Yu J, Pan G et al (2016) Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials 83:169–181CrossRef Cheng L, Sun X, Zhao X, Wang L, Yu J, Pan G et al (2016) Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials 83:169–181CrossRef
2.
3.
go back to reference Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef
4.
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
5.
go back to reference Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine: Nanotechnol Biol Med 2:37–41 Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine: Nanotechnol Biol Med 2:37–41
6.
go back to reference Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef
7.
go back to reference Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46CrossRef Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46CrossRef
8.
go back to reference Tong H-W, Wang M (2007) Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications. J Nanosci Nanotechnol 7:3834–3840CrossRef Tong H-W, Wang M (2007) Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications. J Nanosci Nanotechnol 7:3834–3840CrossRef
9.
go back to reference Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241CrossRef Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241CrossRef
10.
go back to reference Li W-J, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686–1693CrossRef Li W-J, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686–1693CrossRef
11.
go back to reference Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem
12.
go back to reference Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRef Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRef
13.
go back to reference Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263CrossRef Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263CrossRef
14.
go back to reference Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503CrossRef Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503CrossRef
15.
go back to reference Nagarajan S, Pochat-Bohatier C, Teyssier C, Balme S, Miele P, Kalkura N et al (2016) Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Adv 6:109150–109156CrossRef Nagarajan S, Pochat-Bohatier C, Teyssier C, Balme S, Miele P, Kalkura N et al (2016) Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Adv 6:109150–109156CrossRef
16.
go back to reference Kim SJ, Yang DH, Chun HJ, Chae GT, Jang JW, Shim YB (2013) Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications. Macromol Res 21:931–939CrossRef Kim SJ, Yang DH, Chun HJ, Chae GT, Jang JW, Shim YB (2013) Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications. Macromol Res 21:931–939CrossRef
17.
go back to reference West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244CrossRef West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244CrossRef
18.
go back to reference Malliaras K, Kreke M, Marbán E (2011) The stuttering progress of cell therapy for heart disease. Clin Pharmacol Ther 90:532–541CrossRef Malliaras K, Kreke M, Marbán E (2011) The stuttering progress of cell therapy for heart disease. Clin Pharmacol Ther 90:532–541CrossRef
19.
go back to reference Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N et al (2016) Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 34:362–379CrossRef Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N et al (2016) Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 34:362–379CrossRef
20.
go back to reference Bhowmick S, Scharnweber D, Koul V (2016) Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: in vitro study. Biomaterials 88:83–96CrossRef Bhowmick S, Scharnweber D, Koul V (2016) Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: in vitro study. Biomaterials 88:83–96CrossRef
21.
go back to reference Kai D, Wang Q-L, Wang H-J, Prabhakaran MP, Zhang Y, Tan Y-Z et al (2014) Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater 10:2727–2738CrossRef Kai D, Wang Q-L, Wang H-J, Prabhakaran MP, Zhang Y, Tan Y-Z et al (2014) Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater 10:2727–2738CrossRef
22.
go back to reference Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRef Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRef
23.
go back to reference Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRef Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRef
24.
go back to reference Asghar A, Henrickson RL (1982) Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res 28:231–372CrossRef Asghar A, Henrickson RL (1982) Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res 28:231–372CrossRef
25.
go back to reference Narayanan N, Jiang C, Uzunalli G, Thankappan SK, Laurencin CT, Deng M (2016) Polymeric electrospinning for musculoskeletal regenerative engineering. Regen Eng Transl Med 2:69–84CrossRef Narayanan N, Jiang C, Uzunalli G, Thankappan SK, Laurencin CT, Deng M (2016) Polymeric electrospinning for musculoskeletal regenerative engineering. Regen Eng Transl Med 2:69–84CrossRef
26.
go back to reference Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238CrossRef Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238CrossRef
27.
go back to reference Shih Y-RV, Chen C-N, Tsai S-W, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397CrossRef Shih Y-RV, Chen C-N, Tsai S-W, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397CrossRef
28.
go back to reference Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B et al (2016) Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 104:323–338CrossRef Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B et al (2016) Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 104:323–338CrossRef
29.
go back to reference Song J-H, Kim H-E, Kim H-W (2008) Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19:2925–2932CrossRef Song J-H, Kim H-E, Kim H-W (2008) Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19:2925–2932CrossRef
30.
go back to reference Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X et al (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771CrossRef Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X et al (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771CrossRef
31.
go back to reference Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D et al (2015) Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF. Biomed Res Int 2015:10 Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D et al (2015) Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF. Biomed Res Int 2015:10
32.
go back to reference Zhiwei R, Shiqing M, Le J, Zihao L, Deping L, Xu Z et al (2017) Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication 9:025036CrossRef Zhiwei R, Shiqing M, Le J, Zihao L, Deping L, Xu Z et al (2017) Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication 9:025036CrossRef
33.
go back to reference Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72B:156–165CrossRef Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72B:156–165CrossRef
34.
go back to reference Kwak S, Haider A, Gupta KC, Kim S, Kang I-K (2016) Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering. Nanoscale Res Lett 11:323CrossRef Kwak S, Haider A, Gupta KC, Kim S, Kang I-K (2016) Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering. Nanoscale Res Lett 11:323CrossRef
35.
go back to reference Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C et al (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:327–339CrossRef Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C et al (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:327–339CrossRef
36.
go back to reference Shao W, He J, Sang F, Ding B, Chen L, Cui S et al (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351CrossRef Shao W, He J, Sang F, Ding B, Chen L, Cui S et al (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351CrossRef
37.
go back to reference Niu B, Li B, Gu Y, Shen X, Liu Y, Chen L (2017) In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. J Biomater Sci Polym Ed 28:257–270CrossRef Niu B, Li B, Gu Y, Shen X, Liu Y, Chen L (2017) In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. J Biomater Sci Polym Ed 28:257–270CrossRef
38.
go back to reference Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124CrossRef Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124CrossRef
39.
go back to reference Chen J-P, Chen S-H, Lai G-J (2012) Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 7:170CrossRef Chen J-P, Chen S-H, Lai G-J (2012) Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 7:170CrossRef
40.
go back to reference Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRef Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRef
41.
go back to reference Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRef Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRef
42.
go back to reference Min B-M, Lee SW, Lim JN, You Y, Lee TS, Kang PH et al (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142CrossRef Min B-M, Lee SW, Lim JN, You Y, Lee TS, Kang PH et al (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142CrossRef
43.
go back to reference Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRef Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRef
44.
go back to reference Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthorn P, Pavasant P, Supaphol P (2010) In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J 46:428–440CrossRef Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthorn P, Pavasant P, Supaphol P (2010) In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J 46:428–440CrossRef
45.
go back to reference Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRef Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRef
46.
go back to reference Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef
47.
go back to reference Khajavi R, Abbasipour M, Bahador A (2016) Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 133:n/a–n/a Khajavi R, Abbasipour M, Bahador A (2016) Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 133:n/a–n/a
48.
go back to reference Amaral IF, Lamghari M, Sousa SR, Sampaio P, Barbosa MA (2005) Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation. J Biomed Mater Res A 75A:387–397CrossRef Amaral IF, Lamghari M, Sousa SR, Sampaio P, Barbosa MA (2005) Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation. J Biomed Mater Res A 75A:387–397CrossRef
49.
go back to reference Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRef Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRef
50.
go back to reference Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559CrossRef Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559CrossRef
51.
go back to reference Filion TM, Kutikov A, Song J (2011) Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorg Med Chem Lett 21:5067–5070CrossRef Filion TM, Kutikov A, Song J (2011) Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorg Med Chem Lett 21:5067–5070CrossRef
52.
go back to reference Romero R, Chubb L, Travers JK, Gonzales TR, Ehrhart NP, Kipper MJ (2015) Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Carbohydr Polym 122:144–151CrossRef Romero R, Chubb L, Travers JK, Gonzales TR, Ehrhart NP, Kipper MJ (2015) Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Carbohydr Polym 122:144–151CrossRef
53.
go back to reference Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539CrossRef Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539CrossRef
54.
go back to reference Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166CrossRef Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166CrossRef
55.
go back to reference Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082CrossRef Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082CrossRef
56.
go back to reference Jiang W, Shi J, Li W, Sun K (2012) Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a mini-deposition system. Polym Eng Sci 52:2396–2402CrossRef Jiang W, Shi J, Li W, Sun K (2012) Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a mini-deposition system. Polym Eng Sci 52:2396–2402CrossRef
57.
go back to reference Xu T, Miszuk JM, Zhao Y, Sun H, Fong H (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4:2238–2246CrossRef Xu T, Miszuk JM, Zhao Y, Sun H, Fong H (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4:2238–2246CrossRef
58.
go back to reference Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL (2012) Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33:524–534CrossRef Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL (2012) Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33:524–534CrossRef
59.
go back to reference Guo Z, Xu J, Ding S, Li H, Zhou C, Li L (2015) In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed 26:989–1001CrossRef Guo Z, Xu J, Ding S, Li H, Zhou C, Li L (2015) In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed 26:989–1001CrossRef
60.
go back to reference Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967–1977CrossRef Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967–1977CrossRef
61.
go back to reference Li T-T, Ebert K, Vogel J, Groth T (2013) Comparative studies on osteogenic potential of micro- and nanofibre scaffolds prepared by electrospinning of poly(ε-caprolactone). Prog Biomater 2:13CrossRef Li T-T, Ebert K, Vogel J, Groth T (2013) Comparative studies on osteogenic potential of micro- and nanofibre scaffolds prepared by electrospinning of poly(ε-caprolactone). Prog Biomater 2:13CrossRef
62.
go back to reference Scaglione S, Guarino V, Sandri M, Tampieri A, Ambrosio L, Quarto R (2012) In vivo lamellar bone formation in fibre coated MgCHA–PCL-composite scaffolds. J Mater Sci Mater Med 23:117–128CrossRef Scaglione S, Guarino V, Sandri M, Tampieri A, Ambrosio L, Quarto R (2012) In vivo lamellar bone formation in fibre coated MgCHA–PCL-composite scaffolds. J Mater Sci Mater Med 23:117–128CrossRef
63.
go back to reference Chen X, Ergun A, Gevgilili H, Ozkan S, Kalyon DM, Wang H (2013) Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures. Biomaterials 34:8203–8212CrossRef Chen X, Ergun A, Gevgilili H, Ozkan S, Kalyon DM, Wang H (2013) Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures. Biomaterials 34:8203–8212CrossRef
64.
go back to reference Rong D, Chen P, Yang Y, Li Q, Wan W, Fang X et al (2016) Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater 7:6CrossRef Rong D, Chen P, Yang Y, Li Q, Wan W, Fang X et al (2016) Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater 7:6CrossRef
65.
go back to reference Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X et al (2016) Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci 148:139–144CrossRef Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X et al (2016) Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci 148:139–144CrossRef
66.
go back to reference Wutticharoenmongkol P, Pavasant P, Supaphol P (2007) Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules 8:2602–2610CrossRef Wutticharoenmongkol P, Pavasant P, Supaphol P (2007) Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules 8:2602–2610CrossRef
67.
go back to reference Nandakumar A, Yang L, Habibovic P, van Blitterswijk C (2010) Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26:7380–7387CrossRef Nandakumar A, Yang L, Habibovic P, van Blitterswijk C (2010) Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26:7380–7387CrossRef
68.
go back to reference Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137:154–161CrossRef Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137:154–161CrossRef
69.
go back to reference Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK et al (2006) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6:487–493CrossRef Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK et al (2006) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6:487–493CrossRef
70.
go back to reference Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M et al (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2:142CrossRef Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M et al (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2:142CrossRef
71.
go back to reference Yu H-S, Jang J-H, Kim T-I, Lee H-H, Kim H-W (2009) Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J Biomed Mater Res A 88A:747–754CrossRef Yu H-S, Jang J-H, Kim T-I, Lee H-H, Kim H-W (2009) Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J Biomed Mater Res A 88A:747–754CrossRef
72.
go back to reference Li X, Xie J, Yuan X, Xia Y (2008) Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24:14145–14150CrossRef Li X, Xie J, Yuan X, Xia Y (2008) Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24:14145–14150CrossRef
73.
go back to reference Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRef Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRef
74.
go back to reference Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z et al (2013) Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34:735–745CrossRef Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z et al (2013) Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34:735–745CrossRef
75.
go back to reference Spadaccio C, Rainer A, Trombetta M, Vadalá G, Chello M, Covino E et al (2009) Poly-l-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 37:1376–1389CrossRef Spadaccio C, Rainer A, Trombetta M, Vadalá G, Chello M, Covino E et al (2009) Poly-l-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 37:1376–1389CrossRef
76.
go back to reference Chen J, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res A 79A:307–317CrossRef Chen J, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res A 79A:307–317CrossRef
77.
go back to reference Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893CrossRef Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893CrossRef
78.
go back to reference Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377CrossRef Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377CrossRef
79.
go back to reference Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011) Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22:1873–1884CrossRef Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011) Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22:1873–1884CrossRef
80.
go back to reference Li D, Sun H, Jiang L, Zhang K, Liu W, Zhu Y et al (2014) Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS Appl Mater Interfaces 6:9402–9410CrossRef Li D, Sun H, Jiang L, Zhang K, Liu W, Zhu Y et al (2014) Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS Appl Mater Interfaces 6:9402–9410CrossRef
81.
go back to reference Lyu S, Huang C, Yang H, Zhang X (2013) Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 31:1382–1389CrossRef Lyu S, Huang C, Yang H, Zhang X (2013) Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 31:1382–1389CrossRef
82.
go back to reference Zhang H (2011) Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J Bioact Compat Polym 26:347–362CrossRef Zhang H (2011) Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J Bioact Compat Polym 26:347–362CrossRef
83.
go back to reference Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang I-K et al (2005) A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng 100:43–49CrossRef Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang I-K et al (2005) A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng 100:43–49CrossRef
84.
go back to reference Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE et al (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362CrossRef Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE et al (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362CrossRef
85.
go back to reference Yeh L-C, Dai C-F, Yeh J-M, Hsieh P-Y, Wei Y, Chin T-Y et al (2013) Neat poly(ortho-methoxyaniline) electrospun nanofibers for neural stem cell differentiation. J Mater Chem B 1:5469–5477CrossRef Yeh L-C, Dai C-F, Yeh J-M, Hsieh P-Y, Wei Y, Chin T-Y et al (2013) Neat poly(ortho-methoxyaniline) electrospun nanofibers for neural stem cell differentiation. J Mater Chem B 1:5469–5477CrossRef
86.
go back to reference Álvarez Z, Castaño O, Castells AA, Mateos-Timoneda MA, Planell JA, Engel E et al (2014) Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 35:4769–4781CrossRef Álvarez Z, Castaño O, Castells AA, Mateos-Timoneda MA, Planell JA, Engel E et al (2014) Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 35:4769–4781CrossRef
87.
go back to reference Zhang K, Zheng H, Liang S, Gao C (2016) Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 37:131–142CrossRef Zhang K, Zheng H, Liang S, Gao C (2016) Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 37:131–142CrossRef
88.
go back to reference Doyle AD, Yamada KM (2016) Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp Cell Res 343:60–66CrossRef Doyle AD, Yamada KM (2016) Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp Cell Res 343:60–66CrossRef
89.
go back to reference Christopherson GT, Song H, Mao H-Q (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30:556–564CrossRef Christopherson GT, Song H, Mao H-Q (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30:556–564CrossRef
90.
go back to reference Wang A, Tang Z, Park I-H, Zhu Y, Patel S, Daley GQ et al (2011) Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32:5023–5032CrossRef Wang A, Tang Z, Park I-H, Zhu Y, Patel S, Daley GQ et al (2011) Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32:5023–5032CrossRef
91.
go back to reference Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S et al (2008) Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39CrossRef Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S et al (2008) Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39CrossRef
92.
go back to reference Li W, Guo Y, Wang H, Shi D, Liang C, Ye Z et al (2008) Electrospun nanofibers immobilized with collagen for neural stem cells culture. J Mater Sci Mater Med 19:847–854CrossRef Li W, Guo Y, Wang H, Shi D, Liang C, Ye Z et al (2008) Electrospun nanofibers immobilized with collagen for neural stem cells culture. J Mater Sci Mater Med 19:847–854CrossRef
93.
go back to reference Cho YI, Choi JS, Jeong SY, Yoo HS (2010) Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater 6:4725–4733CrossRef Cho YI, Choi JS, Jeong SY, Yoo HS (2010) Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater 6:4725–4733CrossRef
94.
go back to reference Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507CrossRef Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507CrossRef
95.
go back to reference Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335CrossRef Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335CrossRef
96.
go back to reference Lins LC, Wianny F, Livi S, Hidalgo IA, Dehay C, Duchet-Rumeau J et al (2016) Development of bioresorbable hydrophilic–hydrophobic electrospun scaffolds for neural tissue engineering. Biomacromolecules 17:3172–3187CrossRef Lins LC, Wianny F, Livi S, Hidalgo IA, Dehay C, Duchet-Rumeau J et al (2016) Development of bioresorbable hydrophilic–hydrophobic electrospun scaffolds for neural tissue engineering. Biomacromolecules 17:3172–3187CrossRef
97.
go back to reference Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F et al (2013) A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 8:e74417CrossRef Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F et al (2013) A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 8:e74417CrossRef
98.
go back to reference Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB et al (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75CrossRef Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB et al (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75CrossRef
99.
go back to reference Wang G, Hu X, Lin W, Dong C, Wu H (2011) Electrospun PLGA–silk fibroin–collagen nanofibrous scaffolds for nerve tissue engineering. In Vitro Cell Dev Biol Anim 47:234–240CrossRef Wang G, Hu X, Lin W, Dong C, Wu H (2011) Electrospun PLGA–silk fibroin–collagen nanofibrous scaffolds for nerve tissue engineering. In Vitro Cell Dev Biol Anim 47:234–240CrossRef
100.
go back to reference Prabhakaran MP, Venugopal JR, Ter Chyan T, Hai LB, Chan CK, Lim AY, Ramakrisha S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14:1787–1797CrossRef Prabhakaran MP, Venugopal JR, Ter Chyan T, Hai LB, Chan CK, Lim AY, Ramakrisha S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14:1787–1797CrossRef
101.
go back to reference Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 85:149–156CrossRef Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 85:149–156CrossRef
102.
go back to reference Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110:2775–2784CrossRef Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110:2775–2784CrossRef
103.
go back to reference Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B: Biointerfaces 82:307–315CrossRef Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B: Biointerfaces 82:307–315CrossRef
104.
go back to reference Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B et al (2014) Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35:1205–1214CrossRef Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B et al (2014) Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35:1205–1214CrossRef
105.
go back to reference Han J, Wu Q, Xia Y, Wagner MB, Xu C (2016) Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 16:740–750CrossRef Han J, Wu Q, Xia Y, Wagner MB, Xu C (2016) Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 16:740–750CrossRef
106.
go back to reference Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z et al (2015) Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 26:105–114CrossRef Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z et al (2015) Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 26:105–114CrossRef
107.
go back to reference Kai D, Prabhakaran MP, Jin G, Ramakrishna S (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98B:379–386CrossRef Kai D, Prabhakaran MP, Jin G, Ramakrishna S (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98B:379–386CrossRef
108.
go back to reference Kang B-J, Kim H, Lee SK, Kim J, Shen Y, Jung S et al (2014) Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater 10:3007–3017CrossRef Kang B-J, Kim H, Lee SK, Kim J, Shen Y, Jung S et al (2014) Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater 10:3007–3017CrossRef
109.
go back to reference Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Daniel Wagner H et al (2013) Spring-like fibers for cardiac tissue engineering. Biomaterials 34:8599–8606CrossRef Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Daniel Wagner H et al (2013) Spring-like fibers for cardiac tissue engineering. Biomaterials 34:8599–8606CrossRef
110.
go back to reference Tandon N, Cannizzaro C, Chao P-HG, Maidhof R, Marsano A, Au HTH et al (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protocol 4:155–173CrossRef Tandon N, Cannizzaro C, Chao P-HG, Maidhof R, Marsano A, Au HTH et al (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protocol 4:155–173CrossRef
111.
go back to reference Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354CrossRef Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354CrossRef
112.
go back to reference Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N et al (2014) Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35:7346–7354CrossRef Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N et al (2014) Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35:7346–7354CrossRef
113.
go back to reference Hsiao C-W, Bai M-Y, Chang Y, Chung M-F, Lee T-Y, Wu C-T et al (2013) Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34:1063–1072CrossRef Hsiao C-W, Bai M-Y, Chang Y, Chung M-F, Lee T-Y, Wu C-T et al (2013) Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34:1063–1072CrossRef
114.
go back to reference Chung H-J, Kim J-T, Kim H-J, Kyung H-W, Katila P, Lee J-H et al (2015) Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. J Control Release 205:218–230CrossRef Chung H-J, Kim J-T, Kim H-J, Kyung H-W, Katila P, Lee J-H et al (2015) Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. J Control Release 205:218–230CrossRef
115.
go back to reference Molamma PP, Dan K, Laleh G-M, Seeram R (2011) Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 6:055001CrossRef Molamma PP, Dan K, Laleh G-M, Seeram R (2011) Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 6:055001CrossRef
116.
go back to reference Masoumi N, Annabi N, Assmann A, Larson BL, Hjortnaes J, Alemdar N et al (2014) Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 35:7774–7785CrossRef Masoumi N, Annabi N, Assmann A, Larson BL, Hjortnaes J, Alemdar N et al (2014) Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 35:7774–7785CrossRef
117.
go back to reference Yang Liu YX, Zhenhua W, Dezhong W, Wentian Z, Sebastian S, Haiyan L, Yao C, Song X (2016) Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction. Am J Transl Res 8(4):1678–1694 Yang Liu YX, Zhenhua W, Dezhong W, Wentian Z, Sebastian S, Haiyan L, Yao C, Song X (2016) Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction. Am J Transl Res 8(4):1678–1694
118.
go back to reference Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl K-P (2011) Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 108:243–248 Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl K-P (2011) Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 108:243–248
119.
go back to reference Ye J, Shi X, Chen X, Xie J, Wang C, Yao K et al (2014) Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas. J Mater Chem B 2:4226–4236CrossRef Ye J, Shi X, Chen X, Xie J, Wang C, Yao K et al (2014) Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas. J Mater Chem B 2:4226–4236CrossRef
120.
go back to reference Deshpande P, Ramachandran C, Sefat F, Mariappan I, Johnson C, McKean R et al (2013) Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. Biomaterials 34:5088–5106CrossRef Deshpande P, Ramachandran C, Sefat F, Mariappan I, Johnson C, McKean R et al (2013) Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. Biomaterials 34:5088–5106CrossRef
121.
go back to reference Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S (2015) Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomater Sci Polym Ed 26:1139–1151CrossRef Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S (2015) Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomater Sci Polym Ed 26:1139–1151CrossRef
122.
go back to reference Tonsomboon K, Oyen ML (2013) Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 21:185–194CrossRef Tonsomboon K, Oyen ML (2013) Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 21:185–194CrossRef
123.
go back to reference Ortega Í, Ryan AJ, Deshpande P, MacNeil S, Claeyssens F (2013) Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater 9:5511–5520CrossRef Ortega Í, Ryan AJ, Deshpande P, MacNeil S, Claeyssens F (2013) Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater 9:5511–5520CrossRef
124.
go back to reference Kong B, Sun W, Chen G, Tang S, Li M, Shao Z et al (2017) Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Sci Rep 7:970CrossRef Kong B, Sun W, Chen G, Tang S, Li M, Shao Z et al (2017) Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Sci Rep 7:970CrossRef
125.
go back to reference Cejkova J, Trosan P, Cejka C, Lencova A, Zajicova A, Javorkova E et al (2013) Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res 116:312–323CrossRef Cejkova J, Trosan P, Cejka C, Lencova A, Zajicova A, Javorkova E et al (2013) Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res 116:312–323CrossRef
126.
go back to reference Acun A, Hasirci V (2014) Construction of a collagen-based, split-thickness cornea substitute. J Biomater Sci Polym Ed 25:1110–1132CrossRef Acun A, Hasirci V (2014) Construction of a collagen-based, split-thickness cornea substitute. J Biomater Sci Polym Ed 25:1110–1132CrossRef
127.
go back to reference Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R (2014) Surface-modified electrospun poly(ε-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction PCL scaffold in ocular surface engineering. Invest Ophthalmol Vis Sci 55:899–907CrossRef Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R (2014) Surface-modified electrospun poly(ε-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction PCL scaffold in ocular surface engineering. Invest Ophthalmol Vis Sci 55:899–907CrossRef
128.
go back to reference Tucker BA, Redenti SM, Jiang C, Swift JS, Klassen HJ, Smith ME et al (2010) The use of progenitor cell/biodegradable MMP2–PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 31:9–19CrossRef Tucker BA, Redenti SM, Jiang C, Swift JS, Klassen HJ, Smith ME et al (2010) The use of progenitor cell/biodegradable MMP2–PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 31:9–19CrossRef
129.
go back to reference Zhang C, Wen J, Yan J, Kao Y, Ni Z, Cui X et al (2015) In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv 5:12123–12130CrossRef Zhang C, Wen J, Yan J, Kao Y, Ni Z, Cui X et al (2015) In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv 5:12123–12130CrossRef
130.
go back to reference Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell ALM, Kyriakides TR, Saltzman WM (2013) An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials 34:3891–3901CrossRef Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell ALM, Kyriakides TR, Saltzman WM (2013) An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials 34:3891–3901CrossRef
131.
go back to reference Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29:587–596CrossRef Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29:587–596CrossRef
132.
go back to reference Huang R, Li W, Lv X, Lei Z, Bian Y, Deng H et al (2015) Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75CrossRef Huang R, Li W, Lv X, Lei Z, Bian Y, Deng H et al (2015) Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75CrossRef
133.
go back to reference Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRef Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRef
134.
go back to reference Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297CrossRef Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297CrossRef
135.
go back to reference Kang YO, Yoon I-S, Lee SY, Kim D-D, Lee SJ, Park WH et al (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92B:568–576 Kang YO, Yoon I-S, Lee SY, Kim D-D, Lee SJ, Park WH et al (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92B:568–576
136.
go back to reference Yao C-H, Yeh J-Y, Chen Y-S, Li M-H, Huang C-H (2017) Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J Tissue Eng Regen Med 11:905–915CrossRef Yao C-H, Yeh J-Y, Chen Y-S, Li M-H, Huang C-H (2017) Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J Tissue Eng Regen Med 11:905–915CrossRef
137.
go back to reference Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67B:675–679CrossRef Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67B:675–679CrossRef
138.
go back to reference Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S et al (2017) Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater 66:149–157CrossRef Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S et al (2017) Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater 66:149–157CrossRef
139.
go back to reference Grant R, Hay DC, Callanan A (2017) A drug-induced hybrid electrospun poly-capro-lactone: cell-derived extracellular matrix scaffold for liver tissue engineering. Tissue Eng A 23:650–662CrossRef Grant R, Hay DC, Callanan A (2017) A drug-induced hybrid electrospun poly-capro-lactone: cell-derived extracellular matrix scaffold for liver tissue engineering. Tissue Eng A 23:650–662CrossRef
140.
go back to reference Naresh K, Utpal B (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 7:045004CrossRef Naresh K, Utpal B (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 7:045004CrossRef
141.
go back to reference Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L et al (2017) Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Interfaces 9:14716–14723CrossRef Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L et al (2017) Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Interfaces 9:14716–14723CrossRef
142.
go back to reference Liu Y, Li H, Yan S, Wei J, Li X (2014) Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15:1044–1054CrossRef Liu Y, Li H, Yan S, Wei J, Li X (2014) Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15:1044–1054CrossRef
143.
go back to reference Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N et al (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 24:278–287CrossRef Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N et al (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 24:278–287CrossRef
144.
go back to reference Bishi DK, Guhathakurta S, Venugopal JR, Cherian KM, Ramakrishna S (2014) Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold. J Mater Sci Mater Med 25:2579–2589CrossRef Bishi DK, Guhathakurta S, Venugopal JR, Cherian KM, Ramakrishna S (2014) Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold. J Mater Sci Mater Med 25:2579–2589CrossRef
145.
go back to reference Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRef Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRef
146.
go back to reference Xu H, Cai S, Xu L, Yang Y (2014) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470CrossRef Xu H, Cai S, Xu L, Yang Y (2014) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470CrossRef
147.
go back to reference Alves da Silva ML, Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M et al (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11:3228–3236CrossRef Alves da Silva ML, Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M et al (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11:3228–3236CrossRef
148.
go back to reference Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH et al (2012) Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 13:2287–2298CrossRef Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH et al (2012) Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 13:2287–2298CrossRef
149.
go back to reference Wang Z, Wang Y, Zhang P, Chen X (2015) Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Adv 5:96725–96732CrossRef Wang Z, Wang Y, Zhang P, Chen X (2015) Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Adv 5:96725–96732CrossRef
150.
go back to reference Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W et al (2013) Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 34:2624–2631CrossRef Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W et al (2013) Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 34:2624–2631CrossRef
151.
go back to reference Subramanian A, Vu D, Larsen GF, Lin H-Y (2005) Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polym Ed 16:861–873CrossRef Subramanian A, Vu D, Larsen GF, Lin H-Y (2005) Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polym Ed 16:861–873CrossRef
152.
go back to reference Deng J, Wang Y, Zhou L, Gou M, Luo N, Chen H et al (2015) Fabrication and in vivo chondrification of a poly(propylene carbonate)/l-lactide-grafted tetracalcium phosphate electrospun scaffold for cartilage tissue engineering. RSC Adv 5:42943–42954CrossRef Deng J, Wang Y, Zhou L, Gou M, Luo N, Chen H et al (2015) Fabrication and in vivo chondrification of a poly(propylene carbonate)/l-lactide-grafted tetracalcium phosphate electrospun scaffold for cartilage tissue engineering. RSC Adv 5:42943–42954CrossRef
Metadata
Title
Nanofibrous Scaffolds for Tissue Engineering Application
Authors
Sakthivel Nagarajan
S. Narayana Kalkura
Sebastien Balme
Celine Pochat Bohatier
Philippe Miele
Mikhael Bechelany
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_30

Premium Partners