Skip to main content
Top

2020 | OriginalPaper | Chapter

Nanoindentation and Cavitation-Induced Fragmentation Study of Primary Al3Zr Intermetallics Formed in Al Alloys

Authors : Abhinav Priyadarshi, Tungky Subroto, Marcello Conte, Koulis Pericelous, Dmitry Eskin, Paul Prentice, Iakovos Tzanakis

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical properties of primary Al3Zr crystals and their in situ fragmentation behaviour under the influence of a single laser induced cavitation bubble have been investigated using nanoindentation and high-speed imaging techniques, respectively. Linear loading of 10 mN was applied to the intermetallics embedded in the Al matrix using a geometrically well-defined diamond nano-indenter to obtain the mechanical properties at room temperature conditions. Primary Al3Zr crystals were also extracted by dissolving the aluminium matrix of an Al-3wt% Zr alloy. The extracted primary crystals were also subjected to cavitation action in deionized water to image the fracture sequence in real time. Fragmentation of the studied intermetallics was recorded at 500,000 frames per second. Results showed that the intermetallic crystals fail by brittle fracture mode most likely due to the repeatedly-generated shock waves from the collapsing bubbles. The results were interpreted in terms of fracture mechanics using the nanoindentation results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. G. Eskin, I. Tzanakis, F. Wang, G. S. B. Lebon, T. Subroto, K. Pericleous, and J. Mi, “Fundamental studies of ultrasonic melt processing,” Ultrason. Sonochem., vol. 52, pp. 455–467, Apr. 2019. D. G. Eskin, I. Tzanakis, F. Wang, G. S. B. Lebon, T. Subroto, K. Pericleous, and J. Mi, “Fundamental studies of ultrasonic melt processing,” Ultrason. Sonochem., vol. 52, pp. 455–467, Apr. 2019.
2.
go back to reference F. Wang, I. Tzanakis, D. Eskin, J. Mi, and T. Connolley, “In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys,” Ultrason. Sonochem., vol. 39, no. March, pp. 66–76, 2017. F. Wang, I. Tzanakis, D. Eskin, J. Mi, and T. Connolley, “In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys,” Ultrason. Sonochem., vol. 39, no. March, pp. 66–76, 2017.
3.
go back to reference F. Wang, D. Eskin, T. Connolley, and J. Mi, “Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy,” J. Cryst. Growth, vol. 435, pp. 24–30, 2016. F. Wang, D. Eskin, T. Connolley, and J. Mi, “Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy,” J. Cryst. Growth, vol. 435, pp. 24–30, 2016.
4.
go back to reference G. I. Eskin and D. G. Eskin, “Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt,” Ultrason. Sonochem., vol. 10, no. 4–5, pp. 297–301, Jul. 2003. G. I. Eskin and D. G. Eskin, “Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt,” Ultrason. Sonochem., vol. 10, no. 4–5, pp. 297–301, Jul. 2003.
5.
go back to reference T. V. Atamanenko, D. G. Eskin, L. Zhang, and L. Katgerman, “Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti,” Metall. Mater. Trans. A, vol. 41, no. 8, pp. 2056–2066, Aug. 2010. T. V. Atamanenko, D. G. Eskin, L. Zhang, and L. Katgerman, “Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti,” Metall. Mater. Trans. A, vol. 41, no. 8, pp. 2056–2066, Aug. 2010.
6.
go back to reference G. I. Eskin and D. G. Eskin, “Some control mechanisms of spatial solidification in light alloys,” Zeitschrift für Met., vol. 95, no. 8, pp. 682–690, Aug. 2004. G. I. Eskin and D. G. Eskin, “Some control mechanisms of spatial solidification in light alloys,” Zeitschrift für Met., vol. 95, no. 8, pp. 682–690, Aug. 2004.
7.
go back to reference G. I. Eskin, “Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys,” Ultrason. Sonochem., vol. 8, no. 3, pp. 319–325, Jul. 2001. G. I. Eskin, “Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys,” Ultrason. Sonochem., vol. 8, no. 3, pp. 319–325, Jul. 2001.
8.
go back to reference G. M. Swallowe, J. E. Field, C. S. Rees, and A. Duckworth, “A photographic study of the effect of ultrasound on solidification,” Acta Metall., vol. 37, no. 3, pp. 961–967, Mar. 1989. G. M. Swallowe, J. E. Field, C. S. Rees, and A. Duckworth, “A photographic study of the effect of ultrasound on solidification,” Acta Metall., vol. 37, no. 3, pp. 961–967, Mar. 1989.
9.
go back to reference D. Shu, B. Sun, J. Mi, and P. S. Grant, “A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation,” Metall. Mater. Trans. A, vol. 43, no. 10, pp. 3755–3766, Oct. 2012. D. Shu, B. Sun, J. Mi, and P. S. Grant, “A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation,” Metall. Mater. Trans. A, vol. 43, no. 10, pp. 3755–3766, Oct. 2012.
10.
go back to reference R. Chow, R. Blindt, A. Kamp, P. Grocutt, and R. Chivers, “The microscopic visualisation of the sonocrystallisation of ice using a novel ultrasonic cold stage,” Ultrason. Sonochem., vol. 11, no. 3–4, pp. 245–250, May 2004. R. Chow, R. Blindt, A. Kamp, P. Grocutt, and R. Chivers, “The microscopic visualisation of the sonocrystallisation of ice using a novel ultrasonic cold stage,” Ultrason. Sonochem., vol. 11, no. 3–4, pp. 245–250, May 2004.
11.
go back to reference R. M. Wagterveld, L. Boels, M. J. Mayer, and G. J. Witkamp, “Visualization of acoustic cavitation effects on suspended calcite crystals,” Ultrason. Sonochem., vol. 18, no. 1, pp. 216–225, Jan. 2011. R. M. Wagterveld, L. Boels, M. J. Mayer, and G. J. Witkamp, “Visualization of acoustic cavitation effects on suspended calcite crystals,” Ultrason. Sonochem., vol. 18, no. 1, pp. 216–225, Jan. 2011.
12.
go back to reference B. Wang, D. Tan, T. L. Lee, J. C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, and J. Mi, “Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound,” Acta Materialia, vol. 144. pp. 505–515, 2018. B. Wang, D. Tan, T. L. Lee, J. C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, and J. Mi, “Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound,” Acta Materialia, vol. 144. pp. 505–515, 2018.
13.
go back to reference W. W. Xu, I. Tzanakis, P. Srirangam, S. Terzi, W. U. Mirihanage, D. G. Eskin, R. H. Mathiesen, A. P. Horsfield, and P. D. Lee, “In Situ Synchrotron Radiography of Ultrasound Cavitation in a Molten Al-10Cu Alloy,” in TMS 2015 144th Annual Meeting & Exhibition, 2015, pp. 61–66. W. W. Xu, I. Tzanakis, P. Srirangam, S. Terzi, W. U. Mirihanage, D. G. Eskin, R. H. Mathiesen, A. P. Horsfield, and P. D. Lee, “In Situ Synchrotron Radiography of Ultrasound Cavitation in a Molten Al-10Cu Alloy,” in TMS 2015 144th Annual Meeting & Exhibition, 2015, pp. 61–66.
14.
go back to reference F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, and T. Connolley, “A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing,” Acta Materialia, vol. 141. pp. 142–153, 2017. F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, and T. Connolley, “A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing,” Acta Materialia, vol. 141. pp. 142–153, 2017.
15.
go back to reference I. Tzanakis, W. W. Xu, G. S. B. Lebon, D. G. Eskin, K. Pericleous, and P. D. Lee, “In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy,” Phys. Procedia, vol. 70, no. 0, pp. 841–845, 2015. I. Tzanakis, W. W. Xu, G. S. B. Lebon, D. G. Eskin, K. Pericleous, and P. D. Lee, “In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy,” Phys. Procedia, vol. 70, no. 0, pp. 841–845, 2015.
16.
go back to reference W. W. Xu, I. Tzanakis, P. Srirangam, W. U. Mirihanage, D. G. Eskin, A. J. Bodey, and P. D. Lee, “Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts,” Ultrason. Sonochem., vol. 31, pp. 355–361, 2016. W. W. Xu, I. Tzanakis, P. Srirangam, W. U. Mirihanage, D. G. Eskin, A. J. Bodey, and P. D. Lee, “Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts,” Ultrason. Sonochem., vol. 31, pp. 355–361, 2016.
17.
go back to reference I. Tzanakis, D. G. Eskin, A. Georgoulas, and D. K. Fytanidis, “Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble,” Ultrason. Sonochem., vol. 21, no. 2, pp. 866–878, 2014. I. Tzanakis, D. G. Eskin, A. Georgoulas, and D. K. Fytanidis, “Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble,” Ultrason. Sonochem., vol. 21, no. 2, pp. 866–878, 2014.
18.
go back to reference S. Zhen and G. J. Davies, “Observations of the growth morphology of the intermetallic compound Al3Zr,” J. Cryst. Growth, vol. 64, no. 2, pp. 407–410, Nov. 1983. S. Zhen and G. J. Davies, “Observations of the growth morphology of the intermetallic compound Al3Zr,” J. Cryst. Growth, vol. 64, no. 2, pp. 407–410, Nov. 1983.
19.
go back to reference M. Conte, G. Mohanty, J. J. Schwiedrzik, J. M. Wheeler, B. Bellaton, J. Michler, and N. X. Randall, “Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C,” Rev. Sci. Instrum., vol. 90, no. 4, p. 045105, Apr. 2019. M. Conte, G. Mohanty, J. J. Schwiedrzik, J. M. Wheeler, B. Bellaton, J. Michler, and N. X. Randall, “Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C,” Rev. Sci. Instrum., vol. 90, no. 4, p. 045105, Apr. 2019.
20.
go back to reference K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics, vol. 73, pp. 144–153, 2017. K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics, vol. 73, pp. 144–153, 2017.
21.
go back to reference W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 06, pp. 1564–1583, Jun. 1992. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 06, pp. 1564–1583, Jun. 1992.
22.
go back to reference A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am., vol. 100, no. 1, pp. 148–165, Jul. 1996. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am., vol. 100, no. 1, pp. 148–165, Jul. 1996.
23.
go back to reference D. De Fontaine, “Cluster Approach to Order-Disorder Transformations in Alloys,” Solid State Phys., vol. 47, pp. 33–176, Jan. 1994. D. De Fontaine, “Cluster Approach to Order-Disorder Transformations in Alloys,” Solid State Phys., vol. 47, pp. 33–176, Jan. 1994.
24.
go back to reference M. Janssen, J. Zuidema, and R. Wanhill, Fracture mechanics. Spon Press, 2004. M. Janssen, J. Zuidema, and R. Wanhill, Fracture mechanics. Spon Press, 2004.
Metadata
Title
Nanoindentation and Cavitation-Induced Fragmentation Study of Primary Al3Zr Intermetallics Formed in Al Alloys
Authors
Abhinav Priyadarshi
Tungky Subroto
Marcello Conte
Koulis Pericelous
Dmitry Eskin
Paul Prentice
Iakovos Tzanakis
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_23

Premium Partners