Skip to main content
Top

2019 | OriginalPaper | Chapter

60. Nanoindentation for Testing Material Properties

Author : Yu-Lin Shen

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoindentation has seen widespread applications for characterizing the mechanical properties of materials. The technique involves the measurement of applied load and penetration depth, at very small scales, when the indenter is pressed against the test material. An indentation test requires minimal material preparation, and can be performed multiple times on a single specimen. It is particularly suited for thin films, coatings and modified surfaces, as well as materials in their bulk form. Rooted in classical contact mechanics, theories and practice of nanoindentation testing have been developed to extract a wide array of material properties. This chapter presents a comprehensive overview of the fundamentals of nanoindentation. Background information about the indentation theories is first reviewed, with emphasis on the relevant Hertzian contact analysis and Sneddon’s solutions. Common indenter types are then presented, which is followed by discussion on the two most frequently measured properties, hardness and elastic modulus. Guidelines and best practices for the determination of contact stiffness and contact area, along with corrections of thermal drift and machine compliance, are discussed. Representative indentation methodologies for characterizing residual stresses, time-dependent deformation for metals and polymers, fracture toughness for brittle materials, and adhesion of coatings on substrates are also included in the presentation. Computational modeling is shown to yield valuable information of internal deformation field which can be correlated with the indentation response. Unique indentation features and uncertainties associated with material heterogeneity, as well as remaining challenges and future directions, are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1:601–9.CrossRef Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1:601–9.CrossRef
2.
go back to reference Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–38.CrossRef Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–38.CrossRef
3.
go back to reference Hay JL, Pharr GM. Instrumented indentation testing. In: Kuhn H, Medlin D, editors. ASM handbook volume 8: mechanical testing and evaluation. Materials Park: ASM International; 2000. Hay JL, Pharr GM. Instrumented indentation testing. In: Kuhn H, Medlin D, editors. ASM handbook volume 8: mechanical testing and evaluation. Materials Park: ASM International; 2000.
5.
go back to reference Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.CrossRef Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.CrossRef
6.
go back to reference Gouldstone A, Challacoop N, Dao M, Li J, Minor AM, Shen Y-L. Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 2007;55:4015–39.CrossRef Gouldstone A, Challacoop N, Dao M, Li J, Minor AM, Shen Y-L. Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 2007;55:4015–39.CrossRef
7.
go back to reference Lawn BR, Cook RF. Probing material properties with sharp indenters: a retrospective. J Mater Sci. 2012;47:1–22.CrossRef Lawn BR, Cook RF. Probing material properties with sharp indenters: a retrospective. J Mater Sci. 2012;47:1–22.CrossRef
9.
go back to reference Tabor D. The hardness of metals. Oxford: Clarendon Press; 1951. Tabor D. The hardness of metals. Oxford: Clarendon Press; 1951.
10.
go back to reference Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press; 1998.CrossRef Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press; 1998.CrossRef
11.
go back to reference Mathews JR. Indentation hardness and hot pressing. Acta Metall. 1980;28:311–8.CrossRef Mathews JR. Indentation hardness and hot pressing. Acta Metall. 1980;28:311–8.CrossRef
12.
go back to reference Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965;3:47–57.MathSciNetCrossRef Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965;3:47–57.MathSciNetCrossRef
13.
go back to reference Pharr GM, Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7:613–7.CrossRef Pharr GM, Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7:613–7.CrossRef
14.
go back to reference King RB. Elastic analysis of some punch problems for a layered medium. Int J Solids Struct. 1987;23:1657–64.CrossRef King RB. Elastic analysis of some punch problems for a layered medium. Int J Solids Struct. 1987;23:1657–64.CrossRef
15.
go back to reference Field JS, Swain MV. A simple predictive model for spherical indentation. J Mater Res. 1993;8:297–306.CrossRef Field JS, Swain MV. A simple predictive model for spherical indentation. J Mater Res. 1993;8:297–306.CrossRef
16.
go back to reference Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48:11–36.CrossRef Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48:11–36.CrossRef
17.
go back to reference Mencik J, Munz D, Quandt E, Weppelmann ER, Swain MV. Determination of elastic modulus of thin layers using nanoindentation. J Mater Res. 1997;12:2475–84.CrossRef Mencik J, Munz D, Quandt E, Weppelmann ER, Swain MV. Determination of elastic modulus of thin layers using nanoindentation. J Mater Res. 1997;12:2475–84.CrossRef
18.
go back to reference Gao H, Chiu C-H, Lee J. Elastic contact versus indentation modeling of multilayered materials. Int J Solids Struct. 1992;29:2471–92.CrossRef Gao H, Chiu C-H, Lee J. Elastic contact versus indentation modeling of multilayered materials. Int J Solids Struct. 1992;29:2471–92.CrossRef
19.
20.
go back to reference Yang F, Li JCM. Impression test – a review. Mater Sci Eng R. 2013;74:233–53.CrossRef Yang F, Li JCM. Impression test – a review. Mater Sci Eng R. 2013;74:233–53.CrossRef
21.
go back to reference Mayo M, Siegel RW, Narayanasamy A, Nix WD. Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res. 1990;5:1073–82.CrossRef Mayo M, Siegel RW, Narayanasamy A, Nix WD. Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res. 1990;5:1073–82.CrossRef
22.
go back to reference Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30A:601–10.CrossRef Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30A:601–10.CrossRef
23.
go back to reference Cheng Y-T, Cheng C-M. What is indentation hardness? Surf Coat Technol. 2000;133–134:417–24.CrossRef Cheng Y-T, Cheng C-M. What is indentation hardness? Surf Coat Technol. 2000;133–134:417–24.CrossRef
24.
go back to reference Martinez NJ, Shen Y-L. Analysis of indentation-derived power-law creep response. J Mater Eng Perform. 2016;25:1109–16.CrossRef Martinez NJ, Shen Y-L. Analysis of indentation-derived power-law creep response. J Mater Eng Perform. 2016;25:1109–16.CrossRef
25.
go back to reference Herbert EG, Oliver WC, Pharr GM. Nanoindentation and the dynamic characterization of viscoelastic solids. J Phys D Appl Phys. 2008;41:074021.CrossRef Herbert EG, Oliver WC, Pharr GM. Nanoindentation and the dynamic characterization of viscoelastic solids. J Phys D Appl Phys. 2008;41:074021.CrossRef
26.
go back to reference Tsui TY, Oliver WC, Pharr GM. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J Mater Res. 1996;11:752–9.CrossRef Tsui TY, Oliver WC, Pharr GM. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J Mater Res. 1996;11:752–9.CrossRef
27.
go back to reference Bolshakov A, Oliver WC, Pharr GM. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J Mater Res. 1996;11:760–8.CrossRef Bolshakov A, Oliver WC, Pharr GM. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J Mater Res. 1996;11:760–8.CrossRef
28.
go back to reference Suresh S, Giannalopoulos AE. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998;46:5755–67.CrossRef Suresh S, Giannalopoulos AE. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998;46:5755–67.CrossRef
29.
go back to reference Swadener JG, Taljat B, Pharr GM. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J Mater Res. 2001;16:2091–102.CrossRef Swadener JG, Taljat B, Pharr GM. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J Mater Res. 2001;16:2091–102.CrossRef
30.
go back to reference Francis HA. Phenomenological analysis of plastic spherical indentation. J Eng Mater Technol. 1976;98:272–81.CrossRef Francis HA. Phenomenological analysis of plastic spherical indentation. J Eng Mater Technol. 1976;98:272–81.CrossRef
31.
go back to reference Taljat B, Pharr GM. Measurement of residual stresses by load and depth sensing spherical indentation. In: Besser P, Shaffer II E, Kraft O, Moody N, Vinci R, editors. Materials research society symposium proceedings volume 594: thin films – stresses & mechanical properties VIII. Cambridge: Cambridge University Press; 2000. p. 519–24. Taljat B, Pharr GM. Measurement of residual stresses by load and depth sensing spherical indentation. In: Besser P, Shaffer II E, Kraft O, Moody N, Vinci R, editors. Materials research society symposium proceedings volume 594: thin films – stresses & mechanical properties VIII. Cambridge: Cambridge University Press; 2000. p. 519–24.
32.
go back to reference Olivas ER, Swadener JG, Shen Y-L. Nanoindentation measurement of surface residual stresses in particle-reinforced metal matrix composites. Scr Mater. 2006;54:263–8.CrossRef Olivas ER, Swadener JG, Shen Y-L. Nanoindentation measurement of surface residual stresses in particle-reinforced metal matrix composites. Scr Mater. 2006;54:263–8.CrossRef
33.
go back to reference Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J Am Ceram Soc. 1981;64:533–8.CrossRef Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J Am Ceram Soc. 1981;64:533–8.CrossRef
34.
go back to reference Bhushan B, Li X. Nanomechanical characterization of solid surfaces and thin films. Int Mater Rev. 2003;48:125–64.CrossRef Bhushan B, Li X. Nanomechanical characterization of solid surfaces and thin films. Int Mater Rev. 2003;48:125–64.CrossRef
35.
go back to reference Meyers MA, Chawla KK. Mechanical behavior of materials. 2nd ed. Cambridge: Cambridge University Press; 2009.MATH Meyers MA, Chawla KK. Mechanical behavior of materials. 2nd ed. Cambridge: Cambridge University Press; 2009.MATH
36.
go back to reference Chiang SS, Marshall DB, Evans AG. A simple method for adhesion measurements. In: Pask J, Evans AG, editors. Surfaces and interfaces in ceramics and ceramic–metal systems. New York: Plenum; 1981. p. 603–12.CrossRef Chiang SS, Marshall DB, Evans AG. A simple method for adhesion measurements. In: Pask J, Evans AG, editors. Surfaces and interfaces in ceramics and ceramic–metal systems. New York: Plenum; 1981. p. 603–12.CrossRef
37.
go back to reference Marshall DB, Evans AG. Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination. J Appl Phys. 1984;56:2632–8.CrossRef Marshall DB, Evans AG. Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination. J Appl Phys. 1984;56:2632–8.CrossRef
38.
go back to reference Vlassak JJ, Drory MD, Nix WD. A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J Mater Res. 1997;12:1900–10.CrossRef Vlassak JJ, Drory MD, Nix WD. A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J Mater Res. 1997;12:1900–10.CrossRef
39.
go back to reference Benjamin P, Weaver C. Measurement of adhesion of thin films. Proc R Soc Lond A. 1960;254:163–76.CrossRef Benjamin P, Weaver C. Measurement of adhesion of thin films. Proc R Soc Lond A. 1960;254:163–76.CrossRef
40.
go back to reference Tang G, Shen Y-L, Singh DRP, Chawla N. Indentation behavior of metal-ceramic multilayers at the nanoscale: numerical analysis and experimental verification. Acta Mater. 2010;58:2033–44.CrossRef Tang G, Shen Y-L, Singh DRP, Chawla N. Indentation behavior of metal-ceramic multilayers at the nanoscale: numerical analysis and experimental verification. Acta Mater. 2010;58:2033–44.CrossRef
Metadata
Title
Nanoindentation for Testing Material Properties
Author
Yu-Lin Shen
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_46

Premium Partners