Skip to main content
Top

2017 | OriginalPaper | Chapter

10. Nanoribbons

Authors : Toshiaki Enoki, Shintaro Sato

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene nanoribbons have intriguing electronic structures, which are large edge geometry dependent. Armchair-edged graphene nanoribbons, which are energetically stable, have a ribbon-width-dependent intrinsic energy gap, while zigzag-edged ones have spin-polarized nonbonding edge states in the vicinity of the edge region. The edge state is the origin of electronic, magnetic and chemical activities. These features of the electronic structures can be characterized using microprobe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray absorption, angle-resolved photoemission spectroscopy, electron transport, and magnetic measurements. Graphene nanostructures are synthesized using top-down and bottom-up methods, in the latter of which graphene nanostructures with atomically precise edges can be created. The presence of bandgap, which varies depending on the ribbon width and the edge geometry, makes graphene an important candidate for electronics device applications. The spin-polarized edge states localized in the vicinity of edges in zigzag-edged nanoribbons are expected to be utilized for spintronics applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
10.1
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004)CrossRef
10.2
go back to reference M.S. Dresselhaus, G. Dresselhaus, P. Eklund: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic, San Diego 1996) M.S. Dresselhaus, G. Dresselhaus, P. Eklund: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic, San Diego 1996)
10.3
go back to reference R. Saito, M.S. Dresselhaus, G. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)CrossRef R. Saito, M.S. Dresselhaus, G. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)CrossRef
10.4
go back to reference A.H.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009)CrossRef A.H.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
10.5
go back to reference T. Enoki, T. Ando: Physics and Chemistry of Graphene; Graphene to Nanographene (Pan Stanford, Singapore 2013)CrossRef T. Enoki, T. Ando: Physics and Chemistry of Graphene; Graphene to Nanographene (Pan Stanford, Singapore 2013)CrossRef
10.6
go back to reference S. Fujii, T. Enoki: Nanographene and graphene edges: Electronic structure and nanofabrication, Acc. Chem. Res. 46, 2202–2210 (2013)CrossRef S. Fujii, T. Enoki: Nanographene and graphene edges: Electronic structure and nanofabrication, Acc. Chem. Res. 46, 2202–2210 (2013)CrossRef
10.7
go back to reference E. Clar: The Aromatic Sextet (Wiley, London 1972) E. Clar: The Aromatic Sextet (Wiley, London 1972)
10.8
go back to reference T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri: Clar’s theory, π-electron distribution and geometry of graphene nanoribbons, J. Am. Chem. Soc. 132, 3440–3451 (2010)CrossRef T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri: Clar’s theory, π-electron distribution and geometry of graphene nanoribbons, J. Am. Chem. Soc. 132, 3440–3451 (2010)CrossRef
10.9
go back to reference M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920–1923 (1996)CrossRef M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920–1923 (1996)CrossRef
10.10
go back to reference S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki: Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173, 173–199 (2014)CrossRef S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki: Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173, 173–199 (2014)CrossRef
10.11
go back to reference D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, C. Stampfer: Raman spectroscopy on etched graphene nanoribbons, J. Appl. Phys. 109, 073710 (2011)CrossRef D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, C. Stampfer: Raman spectroscopy on etched graphene nanoribbons, J. Appl. Phys. 109, 073710 (2011)CrossRef
10.12
go back to reference L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró: Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography, Nat. Nanotechnol. 3, 397–401 (2008)CrossRef L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró: Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography, Nat. Nanotechnol. 3, 397–401 (2008)CrossRef
10.13
go back to reference X. Li, X. Wang, L. Zhang, S. Lee, H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319, 1229–1232 (2008)CrossRef X. Li, X. Wang, L. Zhang, S. Lee, H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319, 1229–1232 (2008)CrossRef
10.14
go back to reference L. Chen, Y. Hernandez, X. Feng, K. Müllen: Bottom up from nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis, Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef L. Chen, Y. Hernandez, X. Feng, K. Müllen: Bottom up from nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis, Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef
10.15
go back to reference K. Sasaki, R. Saito: Pseudospin and deformation-induced gauge field in graphene, Prog. Theor. Phys. Suppl. 176, 253–278 (2008)CrossRef K. Sasaki, R. Saito: Pseudospin and deformation-induced gauge field in graphene, Prog. Theor. Phys. Suppl. 176, 253–278 (2008)CrossRef
10.17
go back to reference L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie: Quasiparticle energies and bandgaps in graphene nanoribbons, Phys. Rev. Lett. 99, 186801 (2007)CrossRef L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie: Quasiparticle energies and bandgaps in graphene nanoribbons, Phys. Rev. Lett. 99, 186801 (2007)CrossRef
10.18
go back to reference Y.-W. Son, M.L. Cohen, S.G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)CrossRef
10.19
go back to reference Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie: Tuning the bandgap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7, 6123–6128 (2013)CrossRef Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie: Tuning the bandgap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7, 6123–6128 (2013)CrossRef
10.20
go back to reference P. Ruffieux, J. Cai, N.C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C.A. Pignedoli, R. Fasel: Electronic structure of atomically precise graphene nanoribbons, ACS Nano 8, 6930–6935 (2012)CrossRef P. Ruffieux, J. Cai, N.C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C.A. Pignedoli, R. Fasel: Electronic structure of atomically precise graphene nanoribbons, ACS Nano 8, 6930–6935 (2012)CrossRef
10.21
go back to reference A.A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus: Raman Spectroscopy in Graphene Related System (Wiley, Weinheim 2011)CrossRef A.A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus: Raman Spectroscopy in Graphene Related System (Wiley, Weinheim 2011)CrossRef
10.22
go back to reference L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004)CrossRef L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004)CrossRef
10.23
go back to reference L.G. Cançado, M.A. Pimenta, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, A. Jorio: Anisotropy of the Raman spectra of nanographite ribbons, Phys. Rev. Lett. 93, 047403 (2004)CrossRef L.G. Cançado, M.A. Pimenta, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, A. Jorio: Anisotropy of the Raman spectra of nanographite ribbons, Phys. Rev. Lett. 93, 047403 (2004)CrossRef
10.24
go back to reference K. Sasaki, R. Saito, K. Wakabayashi, T. Enoki: Identifying the orientation of edge of graphene using G-band Raman spectra, J. Phys. Soc. Jpn. 79, 044603 (2010)CrossRef K. Sasaki, R. Saito, K. Wakabayashi, T. Enoki: Identifying the orientation of edge of graphene using G-band Raman spectra, J. Phys. Soc. Jpn. 79, 044603 (2010)CrossRef
10.25
go back to reference M. Kiguchi, K. Takai, V.L.J. Joly, T. Enoki, R. Sumii, K. Amemiya: Magnetic edge state and dangling bond state on nanographene in activated carbon fibers, Phys. Rev. B 84, 045421 (2011)CrossRef M. Kiguchi, K. Takai, V.L.J. Joly, T. Enoki, R. Sumii, K. Amemiya: Magnetic edge state and dangling bond state on nanographene in activated carbon fibers, Phys. Rev. B 84, 045421 (2011)CrossRef
10.26
go back to reference Z. Hou, X. Wang, T. Ikeda, S.-F. Huang, K. Terakura, M. Boero, M. Oshima, M. Kakimoto, S. Miyata: Effect of hydrogen termination on carbon K-edge x-ray absorption spectra of nanographene, J. Phys. Chem. C 115, 5392–5403 (2011)CrossRef Z. Hou, X. Wang, T. Ikeda, S.-F. Huang, K. Terakura, M. Boero, M. Oshima, M. Kakimoto, S. Miyata: Effect of hydrogen termination on carbon K-edge x-ray absorption spectra of nanographene, J. Phys. Chem. C 115, 5392–5403 (2011)CrossRef
10.27
go back to reference K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468, 1088–1090 (2010)CrossRef K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468, 1088–1090 (2010)CrossRef
10.28
go back to reference K. Sugawara, T. Sato, S. Souma, T. Takahashi, H. Suematsu: Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy, Phys. Rev. B 73, 045124 (2006)CrossRef K. Sugawara, T. Sato, S. Souma, T. Takahashi, H. Suematsu: Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy, Phys. Rev. B 73, 045124 (2006)CrossRef
10.29
go back to reference M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)CrossRef M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)CrossRef
10.30
go back to reference D. Kondo, H. Nakano, B. Zhou, I.A.K. Hayashi, M. Takahashi, S. Sato, N. Yokoyama: Sub-10-nm-wide intercalated multi-layer graphene interconnects with low resistivity. In: IEEE Int. Interconnect Technol./Adv. Metallization Conf. (2014) pp. 189–192CrossRef D. Kondo, H. Nakano, B. Zhou, I.A.K. Hayashi, M. Takahashi, S. Sato, N. Yokoyama: Sub-10-nm-wide intercalated multi-layer graphene interconnects with low resistivity. In: IEEE Int. Interconnect Technol./Adv. Metallization Conf. (2014) pp. 189–192CrossRef
10.31
go back to reference P. Gallagher, K. Todd, D. Goldhaber-Gordon: Disorder-induced gap behavior in graphene nanoribbons, Phys. Rev. B 81, 115409 (2010)CrossRef P. Gallagher, K. Todd, D. Goldhaber-Gordon: Disorder-induced gap behavior in graphene nanoribbons, Phys. Rev. B 81, 115409 (2010)CrossRef
10.32
go back to reference M.Y. Han, J.C. Brant, P. Kim: Electron transport in disordered graphene nanoribbons, Phys. Rev. Lett. 104, 056801 (2010)CrossRef M.Y. Han, J.C. Brant, P. Kim: Electron transport in disordered graphene nanoribbons, Phys. Rev. Lett. 104, 056801 (2010)CrossRef
10.33
go back to reference X. Liang, S. Wi: Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons, ACS Nano 6, 9700–9710 (2012)CrossRef X. Liang, S. Wi: Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons, ACS Nano 6, 9700–9710 (2012)CrossRef
10.34
go back to reference H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, T. Kato: Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays, Nat. Commun. 7, 11797 (2016)CrossRef H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, T. Kato: Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays, Nat. Commun. 7, 11797 (2016)CrossRef
10.35
go back to reference S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama: Gating operation of transport current in graphene nanoribbon fabricated by helium ion microscope. In: Int. Conf. Solid State Devices Mater., Nagoya (2011) p. 1300 S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama: Gating operation of transport current in graphene nanoribbon fabricated by helium ion microscope. In: Int. Conf. Solid State Devices Mater., Nagoya (2011) p. 1300
10.36
go back to reference A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou: Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography, ACS Nano 8, 1538–1546 (2014)CrossRef A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou: Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography, ACS Nano 8, 1538–1546 (2014)CrossRef
10.37
go back to reference J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470–473 (2010)CrossRef J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470–473 (2010)CrossRef
10.38
go back to reference P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C.A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel: On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531, 489–492 (2016)CrossRef P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C.A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel: On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531, 489–492 (2016)CrossRef
10.39
go back to reference P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P.S. Weiss, N. Asao, T. Hitosugi: Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity, ACS Nano 8, 9181–9187 (2014)CrossRef P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P.S. Weiss, N. Asao, T. Hitosugi: Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity, ACS Nano 8, 9181–9187 (2014)CrossRef
10.40
go back to reference M. Koch, F. Ample, C. Joachim, L. Grill: Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nano 7, 713–717 (2012)CrossRef M. Koch, F. Ample, C. Joachim, L. Grill: Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nano 7, 713–717 (2012)CrossRef
10.41
go back to reference J. Björk, S. Stafström, F. Hanke: Zipping up: Cooperativity drives the synthesis of graphene nanoribbons, J. Am. Chem. Soc. 133, 14884–14887 (2011)CrossRef J. Björk, S. Stafström, F. Hanke: Zipping up: Cooperativity drives the synthesis of graphene nanoribbons, J. Am. Chem. Soc. 133, 14884–14887 (2011)CrossRef
10.42
go back to reference J. Björk, F. Hanke, S. Stafström: Mechanisms of halogen-based covalent self-assembly on metal surfaces, J. Am. Chem. Soc. 135, 5768–5775 (2013)CrossRef J. Björk, F. Hanke, S. Stafström: Mechanisms of halogen-based covalent self-assembly on metal surfaces, J. Am. Chem. Soc. 135, 5768–5775 (2013)CrossRef
10.43
go back to reference K.A. Simonov, N.A. Vinogradov, A.S. Vinogradov, A.V. Generalov, E.M. Zagrebina, N. Mårtensson, A.A. Cafolla, T. Carpy, J.P. Cunniffe, A.B. Preobrajenski: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: Combined core-level spectroscopy and STM study, J. Phys. Chem. C 118, 12532–12540 (2014)CrossRef K.A. Simonov, N.A. Vinogradov, A.S. Vinogradov, A.V. Generalov, E.M. Zagrebina, N. Mårtensson, A.A. Cafolla, T. Carpy, J.P. Cunniffe, A.B. Preobrajenski: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: Combined core-level spectroscopy and STM study, J. Phys. Chem. C 118, 12532–12540 (2014)CrossRef
10.44
go back to reference C. Bronner, J. Björk, P. Tegeder: Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon, J. Phys. Chem. C 119, 486–493 (2015)CrossRef C. Bronner, J. Björk, P. Tegeder: Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon, J. Phys. Chem. C 119, 486–493 (2015)CrossRef
10.45
go back to reference J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen: Toward cove-edged low bandgap graphene nanoribbons, J. Am. Chem. Soc. 137, 6097–6103 (2015)CrossRef J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen: Toward cove-edged low bandgap graphene nanoribbons, J. Am. Chem. Soc. 137, 6097–6103 (2015)CrossRef
10.46
go back to reference R.R. Cloke, T. Marangoni, G.D. Nguyen, T. Joshi, D.J. Rizzo, C. Bronner, T. Cao, S.G. Louie, M.F. Crommie, F.R. Fischer: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons, J. Am. Chem. Soc. 137, 8872–8875 (2015)CrossRef R.R. Cloke, T. Marangoni, G.D. Nguyen, T. Joshi, D.J. Rizzo, C. Bronner, T. Cao, S.G. Louie, M.F. Crommie, F.R. Fischer: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons, J. Am. Chem. Soc. 137, 8872–8875 (2015)CrossRef
10.47
go back to reference S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer: Atomically controlled substitutional boron-doping of graphene nanoribbons, Nat. Commun. 6, 8098 (2015)CrossRef S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer: Atomically controlled substitutional boron-doping of graphene nanoribbons, Nat. Commun. 6, 8098 (2015)CrossRef
10.48
go back to reference H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi: On-surface synthesis of rylene-type graphene nanoribbons, J. Am. Chem. Soc. 137, 4022–4025 (2015)CrossRef H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi: On-surface synthesis of rylene-type graphene nanoribbons, J. Am. Chem. Soc. 137, 4022–4025 (2015)CrossRef
10.49
go back to reference A. Basagni, F. Sedona, C.A. Pignedoli, M. Cattelan, L. Nicolas, M. Casarin, M. Sambi: Molecules–oligomers–nanowires–graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order, J. Am. Chem. Soc. 137, 1802–1808 (2015)CrossRef A. Basagni, F. Sedona, C.A. Pignedoli, M. Cattelan, L. Nicolas, M. Casarin, M. Sambi: Molecules–oligomers–nanowires–graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order, J. Am. Chem. Soc. 137, 1802–1808 (2015)CrossRef
10.50
go back to reference L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai: Facile synthesis of high-quality graphene nanoribbons, Nat. Nano 5, 321–325 (2010)CrossRef L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai: Facile synthesis of high-quality graphene nanoribbons, Nat. Nano 5, 321–325 (2010)CrossRef
10.51
go back to reference L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai: Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877–880 (2009)CrossRef L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai: Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877–880 (2009)CrossRef
10.52
go back to reference D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872–876 (2009)CrossRef D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872–876 (2009)CrossRef
10.53
go back to reference Y. Gong, M. Long, G. Liu, S. Gao, C. Zhu, X. Wei, X. Geng, M. Sun, C. Yang, L. Lu, L. Liu: Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes, Phys. Rev. B 87, 165404 (2013)CrossRef Y. Gong, M. Long, G. Liu, S. Gao, C. Zhu, X. Wei, X. Geng, M. Sun, C. Yang, L. Lu, L. Liu: Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes, Phys. Rev. B 87, 165404 (2013)CrossRef
10.54
go back to reference K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, N. Yokoyama: Selective graphene formation on copper twin crystals, J. Am. Chem. Soc. 134, 12492–12498 (2012)CrossRef K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, N. Yokoyama: Selective graphene formation on copper twin crystals, J. Am. Chem. Soc. 134, 12492–12498 (2012)CrossRef
10.55
go back to reference L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Ultrahigh strength and high electrical conductivity in copper, Science 304, 422–426 (2004)CrossRef L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Ultrahigh strength and high electrical conductivity in copper, Science 304, 422–426 (2004)CrossRef
10.56
go back to reference R.M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P.L. Levesque, K.M. McElhinny, G.J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M.G. Lagally, P.G. Evans, P. Desjardins, R. Martel, M.C. Hersam, N.P. Guisinger, M.S. Arnold: Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)CrossRef R.M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P.L. Levesque, K.M. McElhinny, G.J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M.G. Lagally, P.G. Evans, P. Desjardins, R. Martel, M.C. Hersam, N.P. Guisinger, M.S. Arnold: Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)CrossRef
10.57
go back to reference M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. de Heer: Scalable templated growth of graphene nanoribbons on SiC, Nat. Nano 5, 727–731 (2010)CrossRef M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. de Heer: Scalable templated growth of graphene nanoribbons on SiC, Nat. Nano 5, 727–731 (2010)CrossRef
10.58
go back to reference S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)CrossRef S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)CrossRef
10.59
go back to reference Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 7, 1469–1473 (2007)CrossRef Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 7, 1469–1473 (2007)CrossRef
10.60
go back to reference Y. Ouyang, Y. Yoon, J. Guo: Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study, IEEE Trans. Electron Devices 54, 2223–2231 (2007)CrossRef Y. Ouyang, Y. Yoon, J. Guo: Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study, IEEE Trans. Electron Devices 54, 2223–2231 (2007)CrossRef
10.61
go back to reference G. Fiori, G. Iannaccone: Simulation of graphene nanoribbon field-effect transistors, IEEE Electron Device Lett. 28, 760–762 (2007)CrossRef G. Fiori, G. Iannaccone: Simulation of graphene nanoribbon field-effect transistors, IEEE Electron Device Lett. 28, 760–762 (2007)CrossRef
10.62
go back to reference N. Harada, S. Sato, N. Yokoyama: Theoretical investigation of graphene nanoribbon field-effect transistors designed for digital applications, Jpn. J. Appl. Phys. 52, 094301 (2013)CrossRef N. Harada, S. Sato, N. Yokoyama: Theoretical investigation of graphene nanoribbon field-effect transistors designed for digital applications, Jpn. J. Appl. Phys. 52, 094301 (2013)CrossRef
10.63
go back to reference S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J.H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias: Electronic structure of spatially aligned graphene nanoribbons on Au(788), Phys. Rev. Lett. 108, 216801 (2012)CrossRef S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J.H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias: Electronic structure of spatially aligned graphene nanoribbons on Au(788), Phys. Rev. Lett. 108, 216801 (2012)CrossRef
10.64
go back to reference S. Souma, M. Ueyama, M. Ogawa: Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect, Appl. Phys. Lett. 104, 213505 (2014)CrossRef S. Souma, M. Ueyama, M. Ogawa: Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect, Appl. Phys. Lett. 104, 213505 (2014)CrossRef
10.65
go back to reference A.M. Ionescu, H. Riel: Tunnel field-effect transistors as energy-efficient electronic switches, Nature 479, 329–337 (2011)CrossRef A.M. Ionescu, H. Riel: Tunnel field-effect transistors as energy-efficient electronic switches, Nature 479, 329–337 (2011)CrossRef
10.66
go back to reference K.T. Lam, D. Seah, S.K. Chin, S.B. Kumar, G. Samudra, Y.C. Yeo, G. Liang: A simulation study of graphene-nanoribbon tunneling FET with heterojunction channel, IEEE Electron Device Lett. 31, 555–557 (2010)CrossRef K.T. Lam, D. Seah, S.K. Chin, S.B. Kumar, G. Samudra, Y.C. Yeo, G. Liang: A simulation study of graphene-nanoribbon tunneling FET with heterojunction channel, IEEE Electron Device Lett. 31, 555–557 (2010)CrossRef
10.67
go back to reference R. Grassi, A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani: Simulation study of graphene nanoribbon tunneling transistors including edge roughness effects. In: 10th Int. Conf. Ultimate Integr. Silicon (2009) pp. 57–60 R. Grassi, A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani: Simulation study of graphene nanoribbon tunneling transistors including edge roughness effects. In: 10th Int. Conf. Ultimate Integr. Silicon (2009) pp. 57–60
10.68
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6, 652–655 (2007)CrossRef
10.69
go back to reference P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, J. Bokor: Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett. 103, 253114 (2013)CrossRef P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, J. Bokor: Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett. 103, 253114 (2013)CrossRef
10.70
go back to reference J.P. Llinas, A. Fairbrother, G. Barin, P. Ruffieux, W. Shi, K. Lee, B.Y. Choi, R. Braganza, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, F. Fischer, K. Müllen, A. Zettl, M. Crommie, R. Fasel, J. Bokor: Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons, arXiv:1605.06730 (2016) J.P. Llinas, A. Fairbrother, G. Barin, P. Ruffieux, W. Shi, K. Lee, B.Y. Choi, R. Braganza, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, F. Fischer, K. Müllen, A. Zettl, M. Crommie, R. Fasel, J. Bokor: Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons, arXiv:1605.06730 (2016)
10.71
go back to reference R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl: Breakdown current density of graphene nanoribbons, Appl. Phys. Lett. 94, 243114 (2009)CrossRef R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl: Breakdown current density of graphene nanoribbons, Appl. Phys. Lett. 94, 243114 (2009)CrossRef
10.72
go back to reference D. Kondo, H. Nakano, B. Zhou, I. Kubota, K. Hayashi, K. Yagi, M. Takahashi, M. Sato, S. Sato, N. Yokoyama: Intercalated multi-layer graphene grown by CVD for LSI interconnects. In: IEEE Int. Interconnect Technol. Conf.-IITC (2013) pp. 1–3 D. Kondo, H. Nakano, B. Zhou, I. Kubota, K. Hayashi, K. Yagi, M. Takahashi, M. Sato, S. Sato, N. Yokoyama: Intercalated multi-layer graphene grown by CVD for LSI interconnects. In: IEEE Int. Interconnect Technol. Conf.-IITC (2013) pp. 1–3
10.73
go back to reference S. Sato: Nanocarbon interconnects: Demonstration of properties better than Cu and remaining issues. In: IEEE Int. Interconnect Technol. Conf./IEEE Mater. Adv. Metallization Conf. (IITC/MAM) (2015) pp. 313–316 S. Sato: Nanocarbon interconnects: Demonstration of properties better than Cu and remaining issues. In: IEEE Int. Interconnect Technol. Conf./IEEE Mater. Adv. Metallization Conf. (IITC/MAM) (2015) pp. 313–316
10.74
go back to reference C. Xu, H. Li, K. Banerjee: Modeling, analysis and design of graphene nano-ribbon interconnects, IEEE Trans. Electron Devices 56, 1567–1578 (2009)CrossRef C. Xu, H. Li, K. Banerjee: Modeling, analysis and design of graphene nano-ribbon interconnects, IEEE Trans. Electron Devices 56, 1567–1578 (2009)CrossRef
10.75
go back to reference A. Naeemi, J.D. Meindl: Compact physics-based circuit models for graphene nanoribbon interconnects, IEEE Trans. Electron Devices 56, 1822–1833 (2009)CrossRef A. Naeemi, J.D. Meindl: Compact physics-based circuit models for graphene nanoribbon interconnects, IEEE Trans. Electron Devices 56, 1822–1833 (2009)CrossRef
10.76
go back to reference J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, I. Taleb, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer: Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506, 349–354 (2014)CrossRef J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, I. Taleb, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer: Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506, 349–354 (2014)CrossRef
10.77
go back to reference M.S. Dresselhaus, G. Dresselhaus: Intercalation compounds of graphite, Adv. Phys. 51, 1–186 (2002)CrossRef M.S. Dresselhaus, G. Dresselhaus: Intercalation compounds of graphite, Adv. Phys. 51, 1–186 (2002)CrossRef
10.78
go back to reference Y.-W. Son, M.L. Cohen, S.G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347–349 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347–349 (2006)CrossRef
10.79
go back to reference E. Kan, Z. Li, J. Yang, J.G. Hou: Half-metallicity in edge-modified zigzag graphene nanoribbons, J. Am. Chem. Soc. 130, 4224–4225 (2008)CrossRef E. Kan, Z. Li, J. Yang, J.G. Hou: Half-metallicity in edge-modified zigzag graphene nanoribbons, J. Am. Chem. Soc. 130, 4224–4225 (2008)CrossRef
10.80
go back to reference G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514, 608–611 (2014)CrossRef G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514, 608–611 (2014)CrossRef
10.81
go back to reference B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard: Spin qubits in graphene quantum dots, Nat. Phys. 3, 192–196 (2007)CrossRef B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard: Spin qubits in graphene quantum dots, Nat. Phys. 3, 192–196 (2007)CrossRef
10.82
go back to reference S. Konabe, N.T. Cuong, M. Otani, S. Okada: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations, Appl. Phys. Express 6, 045104 (2013)CrossRef S. Konabe, N.T. Cuong, M. Otani, S. Okada: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations, Appl. Phys. Express 6, 045104 (2013)CrossRef
10.83
go back to reference S. Konabe, S. Okada: Multiple exciton generation by a single photon in single-walled carbon nanotubes, Phys. Rev. Lett. 108, 227401 (2012)CrossRef S. Konabe, S. Okada: Multiple exciton generation by a single photon in single-walled carbon nanotubes, Phys. Rev. Lett. 108, 227401 (2012)CrossRef
Metadata
Title
Nanoribbons
Authors
Toshiaki Enoki
Shintaro Sato
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_10