Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Nanorobotic Agents and Their Biomedical Applications

Authors : Tomasz Jadczyk, Ewa Bryndza Tfaily, Sachin Mishra, Marek Jędrzejek, Marta Bołoz, Parasuraman Padmanabhan, Wojciech Wojakowski, Zdeněk Stárek, Sylvain Martel, Balázs Gulyás

Published in: Innovative Diagnostics and Treatment: Nanorobotics and Stem Cells

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Application of nanorobotic agents is one of the most-promising perspective for future development and progress in medicine. Molecular machines gain significant attention with an ultimate goal to create a theranostic platform interacting with biological system and being able to perform atomic-level tasks. Such concept requires advanced technological approach i.e. design and assembly techniques, in vivo real-time navigation system, sensing methods as well as data transfer. Currently, both artificial (carbon nanotubes) and biological (DNA, proteins, bacteria) components are investigated as a building blocks of nanobots. This chapter presents advancements in nanorobotic agents biomedical application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Sierra DP, Weir NA, Jones JF (2005) A review of research in the field of nanorobotics. Sandia National Laboratories, 50 p Sierra DP, Weir NA, Jones JF (2005) A review of research in the field of nanorobotics. Sandia National Laboratories, 50 p
3.
go back to reference Ummat A, Dubey AA, Mavroidis C (2006) Bionanorobotics: a field inspired by nature. In: Bar-Cohen Y (ed) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton, pp 201–227 Ummat A, Dubey AA, Mavroidis C (2006) Bionanorobotics: a field inspired by nature. In: Bar-Cohen Y (ed) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton, pp 201–227
4.
go back to reference Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3(4):243–246CrossRef Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3(4):243–246CrossRef
5.
go back to reference Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4(2):127–138CrossRef Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4(2):127–138CrossRef
6.
go back to reference Martel S et al (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Rob Res 28(9):1169–1182CrossRef Martel S et al (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Rob Res 28(9):1169–1182CrossRef
7.
go back to reference Martel S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11):114105CrossRef Martel S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11):114105CrossRef
8.
go back to reference Latulippe M, Martel S (2015) Dipole field navigation: theory and proof of concept. IEEE Trans Rob 31(6):1353–1363CrossRef Latulippe M, Martel S (2015) Dipole field navigation: theory and proof of concept. IEEE Trans Rob 31(6):1353–1363CrossRef
9.
go back to reference Martel S et al (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Rob Res 28(4):571–582CrossRef Martel S et al (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Rob Res 28(4):571–582CrossRef
10.
go back to reference Felfoul O, et al (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol Felfoul O, et al (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol
11.
go back to reference Hamdi M (2009) Computational design and multiscale modeling of a nanoactuator using DNA actuation. Nanotechnology 20(48):485501CrossRef Hamdi M (2009) Computational design and multiscale modeling of a nanoactuator using DNA actuation. Nanotechnology 20(48):485501CrossRef
12.
go back to reference Hogg T, Freitas RA Jr (2010) Chemical power for microscopic robots in capillaries. Nanomedicine 6(2):298–317CrossRef Hogg T, Freitas RA Jr (2010) Chemical power for microscopic robots in capillaries. Nanomedicine 6(2):298–317CrossRef
13.
go back to reference Hogg T, Freitas RA Jr (2012) Acoustic communication for medical nanorobots. Nano Commun Netw 3(2):83–102CrossRef Hogg T, Freitas RA Jr (2012) Acoustic communication for medical nanorobots. Nano Commun Netw 3(2):83–102CrossRef
14.
go back to reference Jester SS, Famulok M (2014) Mechanically interlocked DNA nanostructures for functional devices. Acc Chem Res 47(6):1700–1709CrossRef Jester SS, Famulok M (2014) Mechanically interlocked DNA nanostructures for functional devices. Acc Chem Res 47(6):1700–1709CrossRef
15.
go back to reference Abi A et al (2014) Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Appl Mater Interfaces 6(11):8928–8931CrossRef Abi A et al (2014) Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Appl Mater Interfaces 6(11):8928–8931CrossRef
16.
go back to reference Pochorovski I, Diederich F (2014) Development of redox-switchable resorcin[4]arene cavitands. Acc Chem Res 47(7):2096–2105CrossRef Pochorovski I, Diederich F (2014) Development of redox-switchable resorcin[4]arene cavitands. Acc Chem Res 47(7):2096–2105CrossRef
17.
go back to reference Zhang C et al (2014) Contact electrification field-effect transistor. ACS Nano 8(8):8702–8709CrossRef Zhang C et al (2014) Contact electrification field-effect transistor. ACS Nano 8(8):8702–8709CrossRef
18.
go back to reference Ergeneman O et al (2014) Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale 6(18):10495–10499CrossRef Ergeneman O et al (2014) Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale 6(18):10495–10499CrossRef
19.
go back to reference Kopperger E, Pirzer T, Simmel FC (2015) Diffusive transport of molecular cargo tethered to a DNA origami platform. Nano Lett 15(4):2693–2699CrossRef Kopperger E, Pirzer T, Simmel FC (2015) Diffusive transport of molecular cargo tethered to a DNA origami platform. Nano Lett 15(4):2693–2699CrossRef
20.
go back to reference Vach PJ et al (2015) Fast magnetic micropropellers with random shapes. Nano Lett 15(10):7064–7070CrossRef Vach PJ et al (2015) Fast magnetic micropropellers with random shapes. Nano Lett 15(10):7064–7070CrossRef
21.
go back to reference Shao L et al (2015) Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9(12):12542–12551CrossRef Shao L et al (2015) Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9(12):12542–12551CrossRef
22.
go back to reference Xu X, Kim K, Fan D (2015) Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem Int Ed Engl 54(8):2525–2529CrossRef Xu X, Kim K, Fan D (2015) Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem Int Ed Engl 54(8):2525–2529CrossRef
23.
go back to reference Jabbari H, Aminpour M, Montemagno C (2015) Computational approaches to nucleic acid origami. ACS Comb Sci 17(10):535–547CrossRef Jabbari H, Aminpour M, Montemagno C (2015) Computational approaches to nucleic acid origami. ACS Comb Sci 17(10):535–547CrossRef
24.
go back to reference Vavassori P et al (2016) Remote magnetomechanical nanoactuation. Small 12(8):1013–1023CrossRef Vavassori P et al (2016) Remote magnetomechanical nanoactuation. Small 12(8):1013–1023CrossRef
25.
go back to reference Chechetka SA et al (2016) Magnetically and near-infrared light-powered supramolecular nanotransporters for the remote control of enzymatic reactions. Angew Chem Int Ed Engl 55(22):6476–6481CrossRef Chechetka SA et al (2016) Magnetically and near-infrared light-powered supramolecular nanotransporters for the remote control of enzymatic reactions. Angew Chem Int Ed Engl 55(22):6476–6481CrossRef
26.
go back to reference Li G, Xi N, Wang DH (2005) In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine 1(1):31–40CrossRef Li G, Xi N, Wang DH (2005) In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine 1(1):31–40CrossRef
27.
go back to reference Yang R et al (2013) Cellular biophysical dynamics and ion channel activities detected by AFM-based nanorobotic manipulator in insulinoma beta-cells. Nanomedicine 9(5):636–645CrossRef Yang R et al (2013) Cellular biophysical dynamics and ion channel activities detected by AFM-based nanorobotic manipulator in insulinoma beta-cells. Nanomedicine 9(5):636–645CrossRef
28.
go back to reference Acosta JC et al (2013) Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology 24(6):065502CrossRef Acosta JC et al (2013) Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology 24(6):065502CrossRef
29.
go back to reference Chacko JV et al (2014) Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging. J Biomed Opt 19(10):105003CrossRef Chacko JV et al (2014) Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging. J Biomed Opt 19(10):105003CrossRef
30.
go back to reference Martel S (2016) Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: a perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10(2):021301CrossRef Martel S (2016) Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: a perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10(2):021301CrossRef
Metadata
Title
Nanorobotic Agents and Their Biomedical Applications
Authors
Tomasz Jadczyk
Ewa Bryndza Tfaily
Sachin Mishra
Marek Jędrzejek
Marta Bołoz
Parasuraman Padmanabhan
Wojciech Wojakowski
Zdeněk Stárek
Sylvain Martel
Balázs Gulyás
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4527-1_2