Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Nanostructured Chalcogenides

Authors : Mandeep Singh Bakshi, Ph.D., Gurinder Kaur Ahluwalia, Ph.D

Published in: Applications of Chalcogenides: S, Se, and Te

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoscale materials are currently being exploited as active components in a wide range of technological applications such as composite materials, chemical sensing, biomedicine, optoelectronics, and nanoelectronics. The term nano- refers to material structures which have a scale of about 1–100 nm. As the size of the nanoparticles (NPs) decreases and approaches the Bohr radii of atoms, the nanocrystals begin to exhibit quantum mechanical properties and are referred to as a quantum dots (QDs). At this size, its excitons are confined in all three spatial dimensions. The electronic properties of these materials are intermediate between those of bulk semiconductors and of discrete molecules. Advanced nanolithographic techniques such as electron-beam writing, X-ray lithography, proximal probe patterning, and near field optical lithography have demonstrated versatility for generation of a rich variety of nanostructures. However, these techniques can be limiting in terms of cost and throughput. Hence, relatively simpler methods such as vapor–liquid–solid (VLS) formation and chemical methods are being rapidly investigated for synthesis of materials at the nanoscale for different applications. Solution phase or colloidal nanocrystals are promising candidates in these fields, due to their ease of fabrication and processibility. Even more applications and new functional materials might emerge if nanocrystals could be synthesized in shapes of higher complexity than the ones produced by current methods (spheres, rods, disks). In this chapter we review the synthesis of chalcogen based materials at the nanoscale in one, two, and three dimensions using VLS and solution phase techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Rossetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79(2), 1086–1088 (1983)CrossRef R. Rossetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79(2), 1086–1088 (1983)CrossRef
2.
go back to reference W.W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002)CrossRef W.W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002)CrossRef
3.
go back to reference X. Chen, A.Y. Nazzal, M. Xiao, Z.A. Peng, X. Peng, Photoluminescence from single CdSe quantum rods. J. Lumin. 97(3–4), 205–211 (2002)CrossRef X. Chen, A.Y. Nazzal, M. Xiao, Z.A. Peng, X. Peng, Photoluminescence from single CdSe quantum rods. J. Lumin. 97(3–4), 205–211 (2002)CrossRef
4.
go back to reference L. Qu, Z.A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1(6), 333–337 (2001)CrossRef L. Qu, Z.A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1(6), 333–337 (2001)CrossRef
5.
go back to reference L. Qu, W.W. Yu, X. Peng, In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 4(3), 465–469 (2004)CrossRef L. Qu, W.W. Yu, X. Peng, In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 4(3), 465–469 (2004)CrossRef
6.
go back to reference X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3(8), 1103–1106 (2003)CrossRef X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3(8), 1103–1106 (2003)CrossRef
7.
go back to reference B.K.H. Yen, N.E. Stott, K.F. Jensen, M.G. Bawendi, A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv. Mater. (Deerfield Beach, FL) 15(21), 1858–1862 (2003)CrossRef B.K.H. Yen, N.E. Stott, K.F. Jensen, M.G. Bawendi, A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv. Mater. (Deerfield Beach, FL) 15(21), 1858–1862 (2003)CrossRef
8.
go back to reference G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, M. Anni, Temperature and size dependence of nonradiative relaxation and exciton–phonon coupling in colloidal CdTe quantum dots. J. Phys. Chem. C 111(16), 5846–5849 (2007)CrossRef G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, M. Anni, Temperature and size dependence of nonradiative relaxation and exciton–phonon coupling in colloidal CdTe quantum dots. J. Phys. Chem. C 111(16), 5846–5849 (2007)CrossRef
9.
go back to reference Z.A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123(1), 183–184 (2001)CrossRef Z.A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123(1), 183–184 (2001)CrossRef
10.
go back to reference M.A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102(19), 3655–3657 (1998)CrossRef M.A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102(19), 3655–3657 (1998)CrossRef
11.
go back to reference M. Shim, P. Guyot-Sionnest, Organic-capped ZnO nanocrystals: synthesis and n-type character. J. Am. Chem. Soc. 123(47), 11651–11654 (2001)CrossRef M. Shim, P. Guyot-Sionnest, Organic-capped ZnO nanocrystals: synthesis and n-type character. J. Am. Chem. Soc. 123(47), 11651–11654 (2001)CrossRef
12.
go back to reference D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2(9), 1027–1030 (2002)CrossRef D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2(9), 1027–1030 (2002)CrossRef
13.
go back to reference O.I. Micic, C.J. Curtis, K.M. Jones, J.R. Sprague, A.J. Nozik, Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98(19), 4966–4969 (1994)CrossRef O.I. Micic, C.J. Curtis, K.M. Jones, J.R. Sprague, A.J. Nozik, Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98(19), 4966–4969 (1994)CrossRef
14.
go back to reference J. Xu, J.-P. Ge, Y.-D. Li, Solvothermal synthesis of monodisperse PbSe nanocrystals. J. Phys. Chem. B 110(6), 2497–2501 (2006)CrossRef J. Xu, J.-P. Ge, Y.-D. Li, Solvothermal synthesis of monodisperse PbSe nanocrystals. J. Phys. Chem. B 110(6), 2497–2501 (2006)CrossRef
15.
go back to reference W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16(17), 3318–3322 (2004)CrossRef W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16(17), 3318–3322 (2004)CrossRef
16.
go back to reference K.A. Abel, J. Shan, J.-C. Boyer, F. Harris, F.C.J.M. van Veggel, Highly photoluminescent PbS nanocrystals: the beneficial effect of trioctylphosphine. Chem. Mater. 20(12), 3794–3796 (2008)CrossRef K.A. Abel, J. Shan, J.-C. Boyer, F. Harris, F.C.J.M. van Veggel, Highly photoluminescent PbS nanocrystals: the beneficial effect of trioctylphosphine. Chem. Mater. 20(12), 3794–3796 (2008)CrossRef
17.
go back to reference L. Cademartiri, J. Bertolotti, R. Sapienza, D.S. Wiersma, G. von Freymann, G.A. Ozin, Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 110(2), 671–673 (2006)CrossRef L. Cademartiri, J. Bertolotti, R. Sapienza, D.S. Wiersma, G. von Freymann, G.A. Ozin, Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 110(2), 671–673 (2006)CrossRef
18.
go back to reference M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. (Deerfield Beach, FL) 15(21), 1844–1849 (2003)CrossRef M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. (Deerfield Beach, FL) 15(21), 1844–1849 (2003)CrossRef
19.
go back to reference S.-M. Lee, Y.W. Jun, S.-N. Cho, J. Cheon, Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. J. Am. Chem. Soc. 124(38), 11244–11245 (2002)CrossRef S.-M. Lee, Y.W. Jun, S.-N. Cho, J. Cheon, Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. J. Am. Chem. Soc. 124(38), 11244–11245 (2002)CrossRef
20.
go back to reference W. Lin, K. Fritz, G. Guerin, G.R. Bardajee, S. Hinds, V. Sukhovatkin, E.H. Sargent, G.D. Scholes, M.A. Winnik, Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid). Langmuir 24(15), 8215–8219 (2008)CrossRef W. Lin, K. Fritz, G. Guerin, G.R. Bardajee, S. Hinds, V. Sukhovatkin, E.H. Sargent, G.D. Scholes, M.A. Winnik, Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid). Langmuir 24(15), 8215–8219 (2008)CrossRef
21.
go back to reference D.S. English, L.E. Pell, Z. Yu, P.F. Barbara, B.A. Korgel, Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2(7), 681–685 (2002)CrossRef D.S. English, L.E. Pell, Z. Yu, P.F. Barbara, B.A. Korgel, Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2(7), 681–685 (2002)CrossRef
22.
go back to reference J.D. Holmes, K.J. Ziegler, R.C. Doty, L.E. Pell, K.P. Johnston, B.A. Korgel, Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123(16), 3743–3748 (2001)CrossRef J.D. Holmes, K.J. Ziegler, R.C. Doty, L.E. Pell, K.P. Johnston, B.A. Korgel, Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123(16), 3743–3748 (2001)CrossRef
23.
go back to reference Z. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong, S.-T. Lee, Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. (Deerfield Beach, FL) 21(6), 661–664 (2009)CrossRef Z. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong, S.-T. Lee, Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. (Deerfield Beach, FL) 21(6), 661–664 (2009)CrossRef
24.
go back to reference J. Zou, R.K. Baldwin, K.A. Pettigrew, S.M. Kauzlarich, Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4(7), 1181–1186 (2004)CrossRef J. Zou, R.K. Baldwin, K.A. Pettigrew, S.M. Kauzlarich, Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4(7), 1181–1186 (2004)CrossRef
25.
go back to reference J.S. Steckel, S. Coe-Sullivan, V. Bulvic, M.B. Bawendi, 1.3 mm to 1.55 mm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862 (2003)CrossRef J.S. Steckel, S. Coe-Sullivan, V. Bulvic, M.B. Bawendi, 1.3 mm to 1.55 mm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862 (2003)CrossRef
26.
go back to reference L. Bakueva, S. Musikhin, M.A. Hines, T.W.F. Chang, M. Tzolov, G.D. Scholes, E.H. Sargent, Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82, 2895 (2003)CrossRef L. Bakueva, S. Musikhin, M.A. Hines, T.W.F. Chang, M. Tzolov, G.D. Scholes, E.H. Sargent, Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82, 2895 (2003)CrossRef
27.
go back to reference L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, E. Kumacheva, One-stage aqueous synthesis of tunable 800-1300 nm quantum dots with stable efficient luminescence. Adv. Mater. 16, 926 (2004)CrossRef L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, E. Kumacheva, One-stage aqueous synthesis of tunable 800-1300 nm quantum dots with stable efficient luminescence. Adv. Mater. 16, 926 (2004)CrossRef
28.
go back to reference R.D. Schaller, M.A. Petruska, V.I. Klimov, Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. 107, 13765 (2003)CrossRef R.D. Schaller, M.A. Petruska, V.I. Klimov, Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. 107, 13765 (2003)CrossRef
29.
go back to reference R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)CrossRef R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)CrossRef
30.
go back to reference R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozic, A. Shabaev, A.L. Efros, Nano Lett. 5, 865 (2005)CrossRef R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozic, A. Shabaev, A.L. Efros, Nano Lett. 5, 865 (2005)CrossRef
31.
go back to reference (a) S. Wang, S. Yang, Langmuir 16, 389 (2000); (b) S.M. Lee, Y.W. Jun, S.N. Cho, J.W. Cheon, J. Am. Chem. Soc. 124, 11244 (2002); (c) E. Leontidis, M. Orphanou, T. Kyprianidou-Leondidou, F. Krumeich, W. Caseri, Nano Lett. 3, 569 (2003); (d) H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature 375, 769 (1995); (e) D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske, Adv. Mater. 15, 1747 (2003); (f) Y. Ma, L. Qi, J. Ma, H. Cheng, J. Cryst. Growth Des. 4, 351 (2004); (g) Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, J. Cryst. Growth Des. 4, 759 (2004) (a) S. Wang, S. Yang, Langmuir 16, 389 (2000); (b) S.M. Lee, Y.W. Jun, S.N. Cho, J.W. Cheon, J. Am. Chem. Soc. 124, 11244 (2002); (c) E. Leontidis, M. Orphanou, T. Kyprianidou-Leondidou, F. Krumeich, W. Caseri, Nano Lett. 3, 569 (2003); (d) H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature 375, 769 (1995); (e) D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske, Adv. Mater. 15, 1747 (2003); (f) Y. Ma, L. Qi, J. Ma, H. Cheng, J. Cryst. Growth Des. 4, 351 (2004); (g) Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, J. Cryst. Growth Des. 4, 759 (2004)
32.
go back to reference (a) R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, J. Chem. Phys. 83, 1406 (1985); (b) P.S. Khiew, S. Radiman, N.M. Huang, Md. S. Ahmad, J. Cryst. Growth. 254, 235 (2003); (c) D. Wang, D. Yu, M. Shao, X. Liu, W. Yu, Y. Qian, Cryst. Growth Des. 257, 384 (2003); (d) Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, Cryst. Res. Technol. 39, 200 (2004); (e) A.V. Baranov, E.V. Ushakova, V.V. Golubkov, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, K. Berwick, Self-organization of colloidal PbS quantum dots into highly ordered superlattices, Langmuir 31(1), 506–513 (2015) (a) R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, J. Chem. Phys. 83, 1406 (1985); (b) P.S. Khiew, S. Radiman, N.M. Huang, Md. S. Ahmad, J. Cryst. Growth. 254, 235 (2003); (c) D. Wang, D. Yu, M. Shao, X. Liu, W. Yu, Y. Qian, Cryst. Growth Des. 257, 384 (2003); (d) Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, Cryst. Res. Technol. 39, 200 (2004); (e) A.V. Baranov, E.V. Ushakova, V.V. Golubkov, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, K. Berwick, Self-organization of colloidal PbS quantum dots into highly ordered superlattices, Langmuir 31(1), 506–513 (2015)
33.
go back to reference S.-H. Yu, J. Yang, Y.-S. Wu, Z.-H. Han, J. Lu, Y. Xie, Y.-T. Qiana, J. Mater. Chem. 8, 1949 (1998)CrossRef S.-H. Yu, J. Yang, Y.-S. Wu, Z.-H. Han, J. Lu, Y. Xie, Y.-T. Qiana, J. Mater. Chem. 8, 1949 (1998)CrossRef
34.
35.
go back to reference (a) A.A. Korzhuev, Fiz. Chim. Obrab. Mater. 3, 131 (1991); (b) H. Toyoji, Y. Hirohsi, Jpn. Kokai Tokkyo Koho: JP 02 173, 622 (1990) (a) A.A. Korzhuev, Fiz. Chim. Obrab. Mater. 3, 131 (1991); (b) H. Toyoji, Y. Hirohsi, Jpn. Kokai Tokkyo Koho: JP 02 173, 622 (1990)
36.
go back to reference (a) S.T. Lakshmikvar, Sol. Energ. Mater. Sol. Cells 32, 7 (1994); (b) W. Wang, P. Yan, F. Liu, Y. Xie, Y.Geng, Y. Qian, J. Mater. Chem. 8, 2321 (1998) (a) S.T. Lakshmikvar, Sol. Energ. Mater. Sol. Cells 32, 7 (1994); (b) W. Wang, P. Yan, F. Liu, Y. Xie, Y.Geng, Y. Qian, J. Mater. Chem. 8, 2321 (1998)
37.
go back to reference T. Ohtani, M. Motoki, Mater. Res. Bull. 30, 195 (1995) T. Ohtani, M. Motoki, Mater. Res. Bull. 30, 195 (1995)
38.
go back to reference G. Henshaw, I.P. Parkin, G. Shaw, Chem. Commun. 1095 (1996) G. Henshaw, I.P. Parkin, G. Shaw, Chem. Commun. 1095 (1996)
39.
go back to reference G. Henshaw, I.P. Parkin, G. Shaw, J. Chem. Soc.: Dalton Trans. 231 (1997) G. Henshaw, I.P. Parkin, G. Shaw, J. Chem. Soc.: Dalton Trans. 231 (1997)
40.
go back to reference (a) X. Wang, Y. Li, Chem. Commun. 2901 (2007); (b) H. Fan, Chem. Commun. 1383 (2008) (a) X. Wang, Y. Li, Chem. Commun. 2901 (2007); (b) H. Fan, Chem. Commun. 1383 (2008)
41.
go back to reference (a) A.H. Latham, M.E. Williams, Acc. Chem. Res. 41, 411–420 (2008); (b) J.O. Joswig, M. Springborg, G. Seifert, J. Phys. Chem. B 104, 2617–2622 (2000) (a) A.H. Latham, M.E. Williams, Acc. Chem. Res. 41, 411–420 (2008); (b) J.O. Joswig, M. Springborg, G. Seifert, J. Phys. Chem. B 104, 2617–2622 (2000)
42.
go back to reference D.V. Talapin, H. Yu, E.V. Shevchenko, A. Lobo, C.B. Murray, J. Phys. Chem. C 111, 14049–14054 (2007)CrossRef D.V. Talapin, H. Yu, E.V. Shevchenko, A. Lobo, C.B. Murray, J. Phys. Chem. C 111, 14049–14054 (2007)CrossRef
43.
go back to reference Y. Xie, X. Zheng, X. Jiang, J. Lu, L. Zhu, Inorg. Chem. 41(2), 387–392 (2002)CrossRef Y. Xie, X. Zheng, X. Jiang, J. Lu, L. Zhu, Inorg. Chem. 41(2), 387–392 (2002)CrossRef
44.
go back to reference M.S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 111, 18087 (2007)CrossRef M.S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 111, 18087 (2007)CrossRef
45.
go back to reference (a) P. Schuetz, F. Caruso, Chem. Mater. 16, 3066 (2004); (b) H. Yang, P.H. Holloway, J. Phys. Chem. B 107, 9705 (2003) (a) P. Schuetz, F. Caruso, Chem. Mater. 16, 3066 (2004); (b) H. Yang, P.H. Holloway, J. Phys. Chem. B 107, 9705 (2003)
47.
go back to reference (a) J. Bai, Y. Qin, C. Jiang, L. Qi, Chem. Mater. 19, 3367 (2007); (b) B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, Y. Xia, Nano Lett. 7, 1032 (2007) (a) J. Bai, Y. Qin, C. Jiang, L. Qi, Chem. Mater. 19, 3367 (2007); (b) B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, Y. Xia, Nano Lett. 7, 1032 (2007)
48.
go back to reference R.A. Zingaro, W.C. Cooper (eds.), Selenium (Litton Educational Publishing, New York, 1974), p. 25. and 174–217 R.A. Zingaro, W.C. Cooper (eds.), Selenium (Litton Educational Publishing, New York, 1974), p. 25. and 174–217
49.
go back to reference L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, FL, 1997), p. 86 L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, FL, 1997), p. 86
52.
go back to reference S. Xiong, B. Xi, W. Wang, C. Wang, L. Fei, H. Zhou, Y. Qian, Cryst. Growth Des. 6, 1711 (2006)CrossRef S. Xiong, B. Xi, W. Wang, C. Wang, L. Fei, H. Zhou, Y. Qian, Cryst. Growth Des. 6, 1711 (2006)CrossRef
57.
go back to reference R.I. Baitser, V.V. Vainberg, S.S. Varshava, J. Phys. IV 6, C3–429 (1996) R.I. Baitser, V.V. Vainberg, S.S. Varshava, J. Phys. IV 6, C3–429 (1996)
58.
go back to reference M.S. Bakshi, V.S. Jaswal, G. Kaur, T.W. Simpson, P.K. Banipal, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 113, 9121 (2009)CrossRef M.S. Bakshi, V.S. Jaswal, G. Kaur, T.W. Simpson, P.K. Banipal, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 113, 9121 (2009)CrossRef
59.
60.
61.
go back to reference X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, M.P. Bruchez, Nat. Biotechnol. 21, 41–46 (2003)CrossRef X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, M.P. Bruchez, Nat. Biotechnol. 21, 41–46 (2003)CrossRef
65.
go back to reference R. Gill, L. Bahshi, R. Freeman, I. Willne, Angew. Chem. 57, 1676–1679 (2008)CrossRef R. Gill, L. Bahshi, R. Freeman, I. Willne, Angew. Chem. 57, 1676–1679 (2008)CrossRef
66.
go back to reference R. C. Mulrooney, N. Singh, N. Kaur, J. F. Callan, Chem. Commun. 686–688 (2009) R. C. Mulrooney, N. Singh, N. Kaur, J. F. Callan, Chem. Commun. 686–688 (2009)
67.
go back to reference C.Y. Chen, C.T. Cheng, C.W. Lai, P.W. Wu, K.C. Wu, P.T. Chou, Y.H. Chou, H.T. Chiu, Chem. Commun. 263–265 (2006) C.Y. Chen, C.T. Cheng, C.W. Lai, P.W. Wu, K.C. Wu, P.T. Chou, Y.H. Chou, H.T. Chiu, Chem. Commun. 263–265 (2006)
68.
go back to reference M.S. Bakshi, P. Thakur, P. Khullar, G. Kaur, T.S. Banipal, Cryst. Growth Des. 10, 1813–1822 (2010)CrossRef M.S. Bakshi, P. Thakur, P. Khullar, G. Kaur, T.S. Banipal, Cryst. Growth Des. 10, 1813–1822 (2010)CrossRef
69.
go back to reference G. Kaur, M.S. Bakshi, Non-ideal mixing of Se–Te in aqueous micellar phase for nano-alloys over the whole mole mixing range with morphology control from nanoparticles to nanoribbons. J Phys. Chem. C 114, 143–154 (2010)CrossRef G. Kaur, M.S. Bakshi, Non-ideal mixing of Se–Te in aqueous micellar phase for nano-alloys over the whole mole mixing range with morphology control from nanoparticles to nanoribbons. J Phys. Chem. C 114, 143–154 (2010)CrossRef
70.
go back to reference (a) N. Zhao, L. Qi, Adv. Mater. 18, 359 (2006); (b) G. Zhou, M. Lu, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, S. Wang, J. Phy. Chem. 110, 6543 (2006) (a) N. Zhao, L. Qi, Adv. Mater. 18, 359 (2006); (b) G. Zhou, M. Lu, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, S. Wang, J. Phy. Chem. 110, 6543 (2006)
71.
go back to reference (a) M.S. Bakshi, G. Kaur, P. Thakur, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 111, 5932 (2007); (b) M.S. Bakshi, F. Possmayer, N.O. Petersen, Chem. Mater. 19, 1257 (2007); (c) M.S. Bakshi, A. Kaura, P. Bhandari, G. Kaur, K. Torigoe, K. Esumi, J. Nanosci. Nanotechnol. 6, 1405 (2006); (d) M.S. Bakshi, P. Sharma, T.S. Banipal, G. Kaur, K. Torigoe, N.O. Petersen, F. Possmayer, J. Nanosci. Nanotechnol. 7, 916 (2007) (a) M.S. Bakshi, G. Kaur, P. Thakur, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 111, 5932 (2007); (b) M.S. Bakshi, F. Possmayer, N.O. Petersen, Chem. Mater. 19, 1257 (2007); (c) M.S. Bakshi, A. Kaura, P. Bhandari, G. Kaur, K. Torigoe, K. Esumi, J. Nanosci. Nanotechnol. 6, 1405 (2006); (d) M.S. Bakshi, P. Sharma, T.S. Banipal, G. Kaur, K. Torigoe, N.O. Petersen, F. Possmayer, J. Nanosci. Nanotechnol. 7, 916 (2007)
72.
go back to reference N. Wang, X. Cao, G. Lin, S. Yang, Z. Wu, Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route. ACS Nano 2, 184–190 (2008)CrossRef N. Wang, X. Cao, G. Lin, S. Yang, Z. Wu, Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route. ACS Nano 2, 184–190 (2008)CrossRef
73.
go back to reference I. Patla, S. Acharya, L. Zeiri, J. Israelachvili, S. Efrima, Y. Golan, Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett. 7(6), 1459–1462 (2007)CrossRef I. Patla, S. Acharya, L. Zeiri, J. Israelachvili, S. Efrima, Y. Golan, Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett. 7(6), 1459–1462 (2007)CrossRef
74.
go back to reference M.S. Bakshi, G. Kaur, F. Possmayer, N.O. Petersen, Shape controlled synthesis of PSS and PVP capped lead sulfide nano-cubes, bars, and threads. J. Phys. Chem. C 112, 4948–4953 (2008)CrossRef M.S. Bakshi, G. Kaur, F. Possmayer, N.O. Petersen, Shape controlled synthesis of PSS and PVP capped lead sulfide nano-cubes, bars, and threads. J. Phys. Chem. C 112, 4948–4953 (2008)CrossRef
75.
go back to reference (a) S. Wang., S. Yang, Langmuir 16, 389 (2000); (b) A.A. Patel, F. Wu, J.Z. Zhang, C.L. Torres-Martinez, R.K. Mehra, Y. Yang, S.H. Risbud, J. Phys. Chem. B 104, 11598 (2000) (a) S. Wang., S. Yang, Langmuir 16, 389 (2000); (b) A.A. Patel, F. Wu, J.Z. Zhang, C.L. Torres-Martinez, R.K. Mehra, Y. Yang, S.H. Risbud, J. Phys. Chem. B 104, 11598 (2000)
77.
go back to reference R. Gill, M. Zayats, I. Willner, Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)CrossRef R. Gill, M. Zayats, I. Willner, Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)CrossRef
78.
go back to reference P. Zrazhevskiy, M. Sena, X.H. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010)CrossRef P. Zrazhevskiy, M. Sena, X.H. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010)CrossRef
79.
go back to reference N. Hildebrandt, Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5, 5286–5290 (2011)CrossRef N. Hildebrandt, Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5, 5286–5290 (2011)CrossRef
80.
go back to reference L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, G.A. Ozin, Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 128, 10337–10346 (2006)CrossRef L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, G.A. Ozin, Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 128, 10337–10346 (2006)CrossRef
82.
go back to reference W. Lu, J. Fang, Y. Ding, Z.L. Wang, Formation of PbSe nanocrystals: a growth toward nanocubes. J. Phys. Chem. B 109, 19219–19222 (2005)CrossRef W. Lu, J. Fang, Y. Ding, Z.L. Wang, Formation of PbSe nanocrystals: a growth toward nanocubes. J. Phys. Chem. B 109, 19219–19222 (2005)CrossRef
83.
go back to reference K.-S. Cho, D.V. Talapin, W. Gaschler, C.B. Murray, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005)CrossRef K.-S. Cho, D.V. Talapin, W. Gaschler, C.B. Murray, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005)CrossRef
84.
go back to reference Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149–152 (2003)CrossRef Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149–152 (2003)CrossRef
85.
go back to reference X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274–278 (2003)CrossRef X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274–278 (2003)CrossRef
86.
go back to reference Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313–1317 (2001)CrossRef Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313–1317 (2001)CrossRef
88.
go back to reference F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. U. S. A. 101, 14017–14022 (2004)CrossRef F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. U. S. A. 101, 14017–14022 (2004)CrossRef
90.
91.
go back to reference D. Yanover, R.K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G.I. Maikov, O. Solomeshch, A. Sashchiuk, E. Lifshitz, Small-sized PbSe/PbS core/shell colloidal quantum dots. Chem. Mater. 24, 4417–4423 (2012)CrossRef D. Yanover, R.K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G.I. Maikov, O. Solomeshch, A. Sashchiuk, E. Lifshitz, Small-sized PbSe/PbS core/shell colloidal quantum dots. Chem. Mater. 24, 4417–4423 (2012)CrossRef
92.
go back to reference G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, E. Lifshitz, Optical and electronic properties of nonconcentric PbSe/cdse colloidal quantum dots. J. Phys. Chem. Lett. 6, 2444–2448 (2015)CrossRef G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, E. Lifshitz, Optical and electronic properties of nonconcentric PbSe/cdse colloidal quantum dots. J. Phys. Chem. Lett. 6, 2444–2448 (2015)CrossRef
93.
go back to reference B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P.F. Smet, D. Van Thourhout, A.J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, Z. Hens, The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 5, 58–66 (2010)CrossRef B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P.F. Smet, D. Van Thourhout, A.J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, Z. Hens, The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 5, 58–66 (2010)CrossRef
94.
go back to reference K.A. Abel, H. Qiao, J.F. Young, F.C.J.M. van Veggel, Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 1, 2334–2338 (2010)CrossRef K.A. Abel, H. Qiao, J.F. Young, F.C.J.M. van Veggel, Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 1, 2334–2338 (2010)CrossRef
96.
97.
go back to reference Y. Cheng, Y. Wang, F. Bao, D. Chen, Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J. Phys. Chem. B 110(19), 9448–9451 (2006)CrossRef Y. Cheng, Y. Wang, F. Bao, D. Chen, Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J. Phys. Chem. B 110(19), 9448–9451 (2006)CrossRef
99.
go back to reference Y. Zou, D.S. Li, D.R. Yang, Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis. Nanoscale Res. Lett. 6, 374 (2011)CrossRef Y. Zou, D.S. Li, D.R. Yang, Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis. Nanoscale Res. Lett. 6, 374 (2011)CrossRef
100.
go back to reference S.J. Lim, W. Kim, S. Jung, J. Seo, S.K. Shin, Anisotropic etching of semiconductor nanocrystals. Chem. Mater. 23, 5029–5036 (2011)CrossRef S.J. Lim, W. Kim, S. Jung, J. Seo, S.K. Shin, Anisotropic etching of semiconductor nanocrystals. Chem. Mater. 23, 5029–5036 (2011)CrossRef
101.
go back to reference S.J. Lim, W. Kim, S.K. Shin, Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets. J. Am. Chem. Soc. 134, 7576–7579 (2012)CrossRef S.J. Lim, W. Kim, S.K. Shin, Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets. J. Am. Chem. Soc. 134, 7576–7579 (2012)CrossRef
102.
go back to reference M. Saruyama, M. Kanehara, T. Teranishi, Drastic structural transformation of cadmium chalcogenide nanoparticles using chloride ions and surfactants. J. Am. Chem. Soc. 132, 3280–3282 (2010)CrossRef M. Saruyama, M. Kanehara, T. Teranishi, Drastic structural transformation of cadmium chalcogenide nanoparticles using chloride ions and surfactants. J. Am. Chem. Soc. 132, 3280–3282 (2010)CrossRef
103.
go back to reference M.R. Kim, K. Miszta, M. Povia, R. Brescia, S. Christodoulou, M. Prato, S. Marras, L. Manna, Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth. ACS Nano 6(12), 11088–11096 (2012)CrossRef M.R. Kim, K. Miszta, M. Povia, R. Brescia, S. Christodoulou, M. Prato, S. Marras, L. Manna, Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth. ACS Nano 6(12), 11088–11096 (2012)CrossRef
104.
go back to reference K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra et al., Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011)CrossRef K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra et al., Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011)CrossRef
105.
go back to reference W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna, M. Dijkstra, Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. Nano Lett. 12, 5299–5303 (2012)CrossRef W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna, M. Dijkstra, Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. Nano Lett. 12, 5299–5303 (2012)CrossRef
106.
go back to reference A.L. Schmitt, J.M. Higgins, J.R. Szczech, S. Jin, Synthesis and applications of metal silicide nanowires. J. Mater. Chem. 20, 223–235 (2010)CrossRef A.L. Schmitt, J.M. Higgins, J.R. Szczech, S. Jin, Synthesis and applications of metal silicide nanowires. J. Mater. Chem. 20, 223–235 (2010)CrossRef
107.
go back to reference A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2009)CrossRef A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2009)CrossRef
108.
go back to reference R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photon. 3, 569–576 (2009)CrossRef R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photon. 3, 569–576 (2009)CrossRef
109.
go back to reference B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)CrossRef B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)CrossRef
110.
go back to reference W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)CrossRef W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)CrossRef
111.
go back to reference M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008)CrossRef M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008)CrossRef
112.
go back to reference S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328, 476–480 (2010)CrossRef S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328, 476–480 (2010)CrossRef
113.
go back to reference H. Wu, F. Meng, L. Li, S. Jin, G. Zheng, Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 6(5), 4461–4468 (2012)CrossRef H. Wu, F. Meng, L. Li, S. Jin, G. Zheng, Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 6(5), 4461–4468 (2012)CrossRef
114.
go back to reference J. Chikawa, T. Nakayama, Dislocation structure and growth mechanism of cadmium sulfide crystals. J. Appl. Phys. 35, 2493–2501 (1964)CrossRef J. Chikawa, T. Nakayama, Dislocation structure and growth mechanism of cadmium sulfide crystals. J. Appl. Phys. 35, 2493–2501 (1964)CrossRef
115.
go back to reference D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A. Paul Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004)CrossRef D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A. Paul Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004)CrossRef
116.
go back to reference Z.A. Peng, X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002)CrossRef Z.A. Peng, X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002)CrossRef
117.
go back to reference L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003)CrossRef L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003)CrossRef
118.
go back to reference C.Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zincblende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)CrossRef C.Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zincblende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)CrossRef
119.
go back to reference G.S. Hammond, A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955)CrossRef G.S. Hammond, A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955)CrossRef
120.
go back to reference T. Purnima, A. Ruberu, H.R. Albright, B. Callis, B. Ward, J. Cisneros, H.-J. Fan, J. Vela, Molecular control of the nanoscale: effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6(6), 5348–5359 (2012)CrossRef T. Purnima, A. Ruberu, H.R. Albright, B. Callis, B. Ward, J. Cisneros, H.-J. Fan, J. Vela, Molecular control of the nanoscale: effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6(6), 5348–5359 (2012)CrossRef
121.
go back to reference X. Peng, M.C. Schlamp, A. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)CrossRef X. Peng, M.C. Schlamp, A. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)CrossRef
122.
go back to reference D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, P. Alivisatos, Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007)CrossRef D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, P. Alivisatos, Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007)CrossRef
123.
go back to reference L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007)CrossRef L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007)CrossRef
124.
go back to reference K. An, N. Lee, J. Park, S.C. Kim, Y. Hwang, J.G. Park, J.-Y. Kim, J.-H. Park, M.J. Han, J. Yu, T. Hyeon, J. Am. Chem. Soc. 128, 9753–9760 (2006)CrossRef K. An, N. Lee, J. Park, S.C. Kim, Y. Hwang, J.G. Park, J.-Y. Kim, J.-H. Park, M.J. Han, J. Yu, T. Hyeon, J. Am. Chem. Soc. 128, 9753–9760 (2006)CrossRef
125.
go back to reference K.M. Ryan, A. Mastroianni, K.A. Stancil, H.T. Liu, A.P. Alivisatos, Nano Lett. 6, 1479–1482 (2006)CrossRef K.M. Ryan, A. Mastroianni, K.A. Stancil, H.T. Liu, A.P. Alivisatos, Nano Lett. 6, 1479–1482 (2006)CrossRef
126.
go back to reference S. Gupta, Q. Zhang, T. Emrick, T.P. Russell, Nano Lett. 6, 2066–2069 (2006)CrossRef S. Gupta, Q. Zhang, T. Emrick, T.P. Russell, Nano Lett. 6, 2066–2069 (2006)CrossRef
127.
go back to reference Z. Hu, M.D. Fischbein, C. Querner, M. Drndić, Nano Lett. 6, 2585–2591 (2006)CrossRef Z. Hu, M.D. Fischbein, C. Querner, M. Drndić, Nano Lett. 6, 2585–2591 (2006)CrossRef
128.
go back to reference C. Nobile, V.A. Fonoberov, S. Kudera, A. Della Torre, A. Ruffino, G. Chilla, T. Kipp, D. Heitmann, L. Manna, R. Cingolani, A.A. Balandin, R. Krahne, Nano Lett. 7, 476–479 (2007)CrossRef C. Nobile, V.A. Fonoberov, S. Kudera, A. Della Torre, A. Ruffino, G. Chilla, T. Kipp, D. Heitmann, L. Manna, R. Cingolani, A.A. Balandin, R. Krahne, Nano Lett. 7, 476–479 (2007)CrossRef
131.
go back to reference U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 103 (2005)CrossRef U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 103 (2005)CrossRef
133.
go back to reference S.C. Pillai, J.M. Kelly, D.E. McCormack, P. O’Brien, R. Ramesh, J. Mater. Chem. 13, 2586–2590 (2003)CrossRef S.C. Pillai, J.M. Kelly, D.E. McCormack, P. O’Brien, R. Ramesh, J. Mater. Chem. 13, 2586–2590 (2003)CrossRef
134.
go back to reference T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 1019–1022 (1992)CrossRef T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 1019–1022 (1992)CrossRef
135.
go back to reference P. Hald, J. Becker, M. Bremholm, J.S. Pedersen, J. Chevallier, S.B. Iversen, B.B. Iversen, J. Solid State Chem. 179, 2674–2680 (2006)CrossRef P. Hald, J. Becker, M. Bremholm, J.S. Pedersen, J. Chevallier, S.B. Iversen, B.B. Iversen, J. Solid State Chem. 179, 2674–2680 (2006)CrossRef
136.
go back to reference M. Sondergaard, E.D. Bojesen, M. Christensen, B.B. Iversen, Size and morphology dependence of ZnO nanoparticles synthesized by a fast continuous flow hydrothermal method. Cryst. Growth Des. 11, 4027–4033 (2011)CrossRef M. Sondergaard, E.D. Bojesen, M. Christensen, B.B. Iversen, Size and morphology dependence of ZnO nanoparticles synthesized by a fast continuous flow hydrothermal method. Cryst. Growth Des. 11, 4027–4033 (2011)CrossRef
138.
go back to reference H.Q. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew. Chem. Int. Ed. 49, 6361–6364 (2010)CrossRef H.Q. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew. Chem. Int. Ed. 49, 6361–6364 (2010)CrossRef
139.
go back to reference H. Wang, A. Pyatenko, N. Koshizaki, H. Moehwald, D. Shchukin, Single-crystalline ZnO spherical particles by pulsed laser irradiation of colloidal nanoparticles for ultraviolet photodetection. ACS Appl. Mater. Interfaces 6, 2241–2247 (2014)CrossRef H. Wang, A. Pyatenko, N. Koshizaki, H. Moehwald, D. Shchukin, Single-crystalline ZnO spherical particles by pulsed laser irradiation of colloidal nanoparticles for ultraviolet photodetection. ACS Appl. Mater. Interfaces 6, 2241–2247 (2014)CrossRef
140.
go back to reference M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)CrossRef M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)CrossRef
141.
go back to reference C.H. Liu, J.A. Zapien, Y. Yao, Z.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. (Weinheim, Ger.) 15, 838 (2003)CrossRef C.H. Liu, J.A. Zapien, Y. Yao, Z.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. (Weinheim, Ger.) 15, 838 (2003)CrossRef
142.
go back to reference S. Das, J. Kar, J. Choi, T. Lee, K. Moon, J. Myoung, J. Phys. Chem. C 114, 1689 (2010)CrossRef S. Das, J. Kar, J. Choi, T. Lee, K. Moon, J. Myoung, J. Phys. Chem. C 114, 1689 (2010)CrossRef
143.
go back to reference Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)CrossRef Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)CrossRef
144.
go back to reference Y. Zeng, T. Zhang, L. Wang, R. Wang, W. Fu, H. Yang, J. Phys. Chem. C 113, 3442 (2010)CrossRef Y. Zeng, T. Zhang, L. Wang, R. Wang, W. Fu, H. Yang, J. Phys. Chem. C 113, 3442 (2010)CrossRef
145.
go back to reference K. Liu, M. Sakurai, M. Liao, M. Aono, Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 114, 19835–19839 (2010)CrossRef K. Liu, M. Sakurai, M. Liao, M. Aono, Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 114, 19835–19839 (2010)CrossRef
146.
go back to reference W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 78, 2787 (2001)CrossRef W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 78, 2787 (2001)CrossRef
147.
go back to reference C. Falcony, M. Garcia, A. Ortiz, J.C. Alonso, J. Appl. Phys. 72, 1525 (1992)CrossRef C. Falcony, M. Garcia, A. Ortiz, J.C. Alonso, J. Appl. Phys. 72, 1525 (1992)CrossRef
148.
go back to reference Y. Zhang, F. Lu, Z. Wang, H. Wang, M. Kong, X. Zhu, L. Zhang, ZnS nanoparticle-assisted synthesis and optical properties of ZnS nanotowers. Cryst. Growth Des. 7(8), 1459–1462 (2007)CrossRef Y. Zhang, F. Lu, Z. Wang, H. Wang, M. Kong, X. Zhu, L. Zhang, ZnS nanoparticle-assisted synthesis and optical properties of ZnS nanotowers. Cryst. Growth Des. 7(8), 1459–1462 (2007)CrossRef
149.
go back to reference G. Yang, H. Zhong, R. Liu, Y. Li, B. Zou, In situ aggregation of ZnSe nanoparticles into supraparticles: shape control and doping effects. Langmuir 29, 1970–1976 (2013)CrossRef G. Yang, H. Zhong, R. Liu, Y. Li, B. Zou, In situ aggregation of ZnSe nanoparticles into supraparticles: shape control and doping effects. Langmuir 29, 1970–1976 (2013)CrossRef
151.
go back to reference P. Armand, M.L. Saboungi, D.L. Price, L. Iton, C. Cramer, M. Grimsditch, Phys. Rev. Lett. 79(11), 2061 (1997)CrossRef P. Armand, M.L. Saboungi, D.L. Price, L. Iton, C. Cramer, M. Grimsditch, Phys. Rev. Lett. 79(11), 2061 (1997)CrossRef
152.
go back to reference A. Goldbach, L. Iton, M. Grimsditch, M.L. Saboungi, J. Am. Chem. Soc. 118(8), 2004 (1996)CrossRef A. Goldbach, L. Iton, M. Grimsditch, M.L. Saboungi, J. Am. Chem. Soc. 118(8), 2004 (1996)CrossRef
153.
go back to reference J.A. Johnson, M.-L. Saboungi, P. Thiyagarajan, R. Csencsits, D. Meisel, Selenium nanoparticles: a small-angle neutron scattering study. J. Phys. Chem. B 103, 59–63 (1999)CrossRef J.A. Johnson, M.-L. Saboungi, P. Thiyagarajan, R. Csencsits, D. Meisel, Selenium nanoparticles: a small-angle neutron scattering study. J. Phys. Chem. B 103, 59–63 (1999)CrossRef
154.
go back to reference B. Mayers, B. Gates, Y. Xia, One dimensional nanostructures of chalcogens and chalcogenides. Int. J. Nanotechnol. 1(1/2), 86–104 (2004)CrossRef B. Mayers, B. Gates, Y. Xia, One dimensional nanostructures of chalcogens and chalcogenides. Int. J. Nanotechnol. 1(1/2), 86–104 (2004)CrossRef
155.
go back to reference C. Ana, S. Wang, Diameter-selected synthesis of single crystalline trigonal selenium nanowires. Mater. Chem. Phys. 101, 357–361 (2007)CrossRef C. Ana, S. Wang, Diameter-selected synthesis of single crystalline trigonal selenium nanowires. Mater. Chem. Phys. 101, 357–361 (2007)CrossRef
156.
go back to reference J. Stuke, in Selenium, ed. by R.A. Zingaro, W.C. Cooper (Van Nostrand Reinhold, New York, 1994) J. Stuke, in Selenium, ed. by R.A. Zingaro, W.C. Cooper (Van Nostrand Reinhold, New York, 1994)
158.
go back to reference A. Prince, G.V. Raynor, D.S. Evans, Phase Diagrams of Ternary Gold Alloys (Institute of Metals, Brookfield, VT, 1990) A. Prince, G.V. Raynor, D.S. Evans, Phase Diagrams of Ternary Gold Alloys (Institute of Metals, Brookfield, VT, 1990)
159.
go back to reference N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, J. Appl. Phys. 69, 2849 (1991)CrossRef N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, J. Appl. Phys. 69, 2849 (1991)CrossRef
160.
go back to reference V. Damodara Das, N. Soundararajan, M. Pattabi, J. Mater. Sci. 22, 3522 (1987)CrossRef V. Damodara Das, N. Soundararajan, M. Pattabi, J. Mater. Sci. 22, 3522 (1987)CrossRef
161.
go back to reference M.A. Caldwell, S. Raoux, R.Y. Wang, H.-S. Philip Wong, D.J. Milliron, Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J. Mater. Chem. 20, 1285–1291 (2010)CrossRef M.A. Caldwell, S. Raoux, R.Y. Wang, H.-S. Philip Wong, D.J. Milliron, Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J. Mater. Chem. 20, 1285–1291 (2010)CrossRef
162.
go back to reference S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang, Y. Cui, Synthesis and characterization of phase-change nanowires. Nano Lett. 6(7), 1514–1517 (2006)CrossRef S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang, Y. Cui, Synthesis and characterization of phase-change nanowires. Nano Lett. 6(7), 1514–1517 (2006)CrossRef
163.
go back to reference X. Sun, B. Yu, M. Meyyappan, Synthesis and nanoscale thermal encoding of phase-change nanowires. Appl. Phys. Lett. 90, 183116 (2007)CrossRef X. Sun, B. Yu, M. Meyyappan, Synthesis and nanoscale thermal encoding of phase-change nanowires. Appl. Phys. Lett. 90, 183116 (2007)CrossRef
164.
165.
go back to reference H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, K. Wickramasinghe, Nat. Mater. 5, 383 (2006)CrossRef H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, K. Wickramasinghe, Nat. Mater. 5, 383 (2006)CrossRef
Metadata
Title
Nanostructured Chalcogenides
Authors
Mandeep Singh Bakshi, Ph.D.
Gurinder Kaur Ahluwalia, Ph.D
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-41190-3_3