Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Nanostructured Functional Materials: Silver Nanoparticles in Polymer for the Generation of Antimicrobial Characteristics

Authors : Luiz Fernando Gorup, Francisco N. Souza Neto, Andressa M. Kubo, José Antonio Santos Souza, Renan Aparecido Fernandes, Gabriela Lopes Fernandes, Douglas Roberto Monteiro, Debora Barros Barbosa, Emerson Rodrigues Camargo

Published in: Recent Advances in Complex Functional Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of nanosized and nanostructured materials in ordinary life is the other side of the coin that emerged from the scientific progress. It established a new interdisciplinary point of view about the behavior of atoms and molecules at a very small scale, leading to an unprecedented understanding over several aspects of the matter and a whole knowledge on its fundamental properties never imagined before. These nanomaterials provide innovative solutions in technological and environmental fields related to solar energy conversion, catalysis, medicine, and water treatment. Usually, these novel and enhanced characteristics that are easily found in metallic nanoparticles are related to their high surface-to-volume ratio. In this sense, silver nanoparticles have been the subject of substantial research especially for medical and health applications. For decades, people have been using colloidal silver for their own health benefits, but detailed studies on its effects in the environment have only recently begun. Initial studies demonstrated that cells and microbes are primarily affected by low levels of silver ion (Ag+) released from the nanoparticle. Due to the increasing use of silver nanoparticles in products for daily use, such as in shampoos, soaps, detergents, cosmetics, toothpastes, and medical and pharmaceutical products, there has been a major effort worldwide to assess the safety of using silver nanoparticles and to understand how these nanoparticles effectively kill several microorganisms. Silver has been considered as a potential disinfectant in many investigations due to its intense antimicrobial activity and low toxicity to mammalian cells and tissues. It is one of the most powerful natural disinfectants known, reason by which its deposition onto prosthetic device surfaces (e.g., catheters, heart valves, etc.) would be an attractive approach for preventing bacterial attachment and biofilm formation, which can lead to serious infections. Another potential application could be in food processing equipment and packaging materials, where the presence of undesirable bacteria can cause food spoilage and foodborne diseases. For this reason, an increasingly common application is the use of silver nanoparticles for antimicrobial coatings, many textiles, polymer, and biomedical devices that contain silver nanoparticles to provide protection against bacteria and fungi. Silver nanoparticles coated in the polymer matrix increase the efficiency of antimicrobial action with a controlled release of Ag+. The combination of silver with polymeric material reduces the transmission of the infectious agent. This chapter will describe nanostructured functional polymer materials containing silver nanoparticles for the generation of antimicrobial characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jesline A, John NP, Narayanan PM, Vani C, Murugan S (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5(2):157–162. doi:10.1007/s13204-014-0301-x CrossRef Jesline A, John NP, Narayanan PM, Vani C, Murugan S (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5(2):157–162. doi:10.​1007/​s13204-014-0301-x CrossRef
2.
go back to reference Abou El-Nour KMM, Aa E, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRef Abou El-Nour KMM, Aa E, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRef
3.
go back to reference Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292CrossRef Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292CrossRef
4.
go back to reference Almajhdi FN, Fouad H, Khalil KA et al (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25:1045–1053CrossRef Almajhdi FN, Fouad H, Khalil KA et al (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25:1045–1053CrossRef
5.
go back to reference Alshehri SM, Aldalbahi A, Al-Hajji AB, Chaudhary AA, Panhuis MI, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236CrossRef Alshehri SM, Aldalbahi A, Al-Hajji AB, Chaudhary AA, Panhuis MI, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236CrossRef
6.
go back to reference Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126CrossRef Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126CrossRef
7.
go back to reference Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57CrossRef Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57CrossRef
10.
go back to reference Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976. doi:10.1021/acsami.6b00161 CrossRef Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976. doi:10.​1021/​acsami.​6b00161 CrossRef
11.
go back to reference Bansod SD, Bawaskar MS, Gade AK, Rai MK (2015) Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. Inst Eng Technol 9(4):165–171 Bansod SD, Bawaskar MS, Gade AK, Rai MK (2015) Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. Inst Eng Technol 9(4):165–171
12.
go back to reference Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polym Degrad Stab 133:339–348CrossRef Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polym Degrad Stab 133:339–348CrossRef
13.
go back to reference Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875CrossRef Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875CrossRef
14.
go back to reference Blaser SA, Scheringer M, Macleod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRef Blaser SA, Scheringer M, Macleod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRef
15.
go back to reference Bourlinos AB, Stassinopoulos A, Anglos D, Herrera R, Anastasiadis SH, Petridis D et al (2006) Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small 2:513CrossRef Bourlinos AB, Stassinopoulos A, Anglos D, Herrera R, Anastasiadis SH, Petridis D et al (2006) Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small 2:513CrossRef
16.
go back to reference Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135CrossRef Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135CrossRef
17.
go back to reference Arijit Kumar C, Ruchira C, Tarakdas B (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101CrossRef Arijit Kumar C, Ruchira C, Tarakdas B (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101CrossRef
18.
19.
go back to reference Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279CrossRef Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279CrossRef
20.
go back to reference Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237CrossRef Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237CrossRef
21.
go back to reference Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588CrossRef Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588CrossRef
22.
go back to reference Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRef Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRef
23.
go back to reference Chen A, Wang H, Li X (2005) One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications. Chem Commun:1863–1864. doi:10.1039/B417744D Chen A, Wang H, Li X (2005) One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications. Chem Commun:1863–1864. doi:10.​1039/​B417744D
24.
go back to reference Choi JY, Ramachandran G, Kandlikar M (2008) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43(9):3030–3034CrossRef Choi JY, Ramachandran G, Kandlikar M (2008) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43(9):3030–3034CrossRef
26.
go back to reference Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2(5):497–501CrossRef Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2(5):497–501CrossRef
27.
go back to reference Dallas P, Virender KS, Radek Z (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135CrossRef Dallas P, Virender KS, Radek Z (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135CrossRef
28.
go back to reference Das A, Kumar A, Patil NB, Viswanathan C, Ghosh D (2015) Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr Polym 130:254–261CrossRef Das A, Kumar A, Patil NB, Viswanathan C, Ghosh D (2015) Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr Polym 130:254–261CrossRef
29.
go back to reference Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23:147–161CrossRef Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23:147–161CrossRef
30.
go back to reference De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Med 3(2):133–149 De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Med 3(2):133–149
31.
go back to reference de Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524CrossRef de Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524CrossRef
32.
go back to reference Deng Y, Li J, Pu Y, Chen Y, Zhao J, Tang J (2016) Ultra-fine silver nanoparticles dispersed in mono-dispersed amino functionalized poly glycidyl methacrylate based microspheres as an effective anti-bacterial agent. React Funct Polym 103:92–98CrossRef Deng Y, Li J, Pu Y, Chen Y, Zhao J, Tang J (2016) Ultra-fine silver nanoparticles dispersed in mono-dispersed amino functionalized poly glycidyl methacrylate based microspheres as an effective anti-bacterial agent. React Funct Polym 103:92–98CrossRef
33.
go back to reference dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944CrossRef dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944CrossRef
34.
go back to reference Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152CrossRef Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152CrossRef
35.
go back to reference Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976CrossRef Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976CrossRef
36.
go back to reference El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80:779–782CrossRef El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80:779–782CrossRef
37.
go back to reference Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRef Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRef
38.
go back to reference Fernández JA, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanza MI (2016) Production of silver nanoparticles using yeasts and evaluation of theirantifungal activity against phytopathogenic fungi. Process Biochem 51:1306–1313CrossRef Fernández JA, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanza MI (2016) Production of silver nanoparticles using yeasts and evaluation of theirantifungal activity against phytopathogenic fungi. Process Biochem 51:1306–1313CrossRef
39.
go back to reference Fernandez JG, Almeida CA, Fernandez-Baldo MA, Felici E, Raba J, Sanz MI (2016) Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification. Talanta 146:237–243CrossRef Fernandez JG, Almeida CA, Fernandez-Baldo MA, Felici E, Raba J, Sanz MI (2016) Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification. Talanta 146:237–243CrossRef
40.
go back to reference Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22CrossRef Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22CrossRef
41.
go back to reference Fuchs AV, Ritz S, Pütz S, Mailänder V, Landfester K, Ziener U (2013) Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combuning antifouling and antibacterial properties. Biomater Sci 1:470–477CrossRef Fuchs AV, Ritz S, Pütz S, Mailänder V, Landfester K, Ziener U (2013) Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combuning antifouling and antibacterial properties. Biomater Sci 1:470–477CrossRef
42.
go back to reference Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348. doi:10.1007/s11051-008-9428-6 CrossRef Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348. doi:10.​1007/​s11051-008-9428-6 CrossRef
43.
go back to reference Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–269CrossRef Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–269CrossRef
44.
go back to reference Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253CrossRef Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253CrossRef
47.
go back to reference Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515CrossRef Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515CrossRef
48.
go back to reference Hebeish A, Hashem M, El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92(1):407–413CrossRef Hebeish A, Hashem M, El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92(1):407–413CrossRef
49.
go back to reference Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12CrossRef Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12CrossRef
50.
go back to reference Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423. doi:10.1155/2014/410423 CrossRef Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423. doi:10.​1155/​2014/​410423 CrossRef
51.
go back to reference Ijeri VS, Nair JR, Gerbaldi C, Bongiovanni RM, Penazzi N (2010) Metallopolymer capacitor in “one pot” by self-directed UV-assisted process. ACS Appl Mater Interfaces 2:3192CrossRef Ijeri VS, Nair JR, Gerbaldi C, Bongiovanni RM, Penazzi N (2010) Metallopolymer capacitor in “one pot” by self-directed UV-assisted process. ACS Appl Mater Interfaces 2:3192CrossRef
52.
go back to reference Ji N, Liu C, Zhang S, Xiong L, Sun Q (2016) Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT- Food Sci Technol 74:311–318CrossRef Ji N, Liu C, Zhang S, Xiong L, Sun Q (2016) Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT- Food Sci Technol 74:311–318CrossRef
53.
go back to reference Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8–8. doi:10.1186/1743-8977-7-8 CrossRef Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8–8. doi:10.​1186/​1743-8977-7-8 CrossRef
54.
go back to reference Kavitha Sankar PC, Ramakrishnan R, Rosemary MJ (2016) Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products. Mater Sci Eng C Mater Biol Appl 61:631–637CrossRef Kavitha Sankar PC, Ramakrishnan R, Rosemary MJ (2016) Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products. Mater Sci Eng C Mater Biol Appl 61:631–637CrossRef
56.
go back to reference Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRef Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRef
57.
go back to reference Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRef Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRef
58.
go back to reference Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574CrossRef Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574CrossRef
59.
go back to reference Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681CrossRef Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681CrossRef
60.
go back to reference Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088CrossRef Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088CrossRef
61.
go back to reference Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2011) Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. J Food Sci 76(3):R90–R102CrossRef Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2011) Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. J Food Sci 76(3):R90–R102CrossRef
62.
go back to reference Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9:2399–2407. doi:10.2147/IJN.S55015 Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9:2399–2407. doi:10.​2147/​IJN.​S55015
63.
go back to reference Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MNB (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9(1):244–271. doi:10.3390/ijerph9010244 CrossRef Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MNB (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9(1):244–271. doi:10.​3390/​ijerph9010244 CrossRef
64.
go back to reference Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6:20470. doi:10.1038/srep20470 CrossRef Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6:20470. doi:10.​1038/​srep20470 CrossRef
65.
go back to reference Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1:1381CrossRef Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1:1381CrossRef
66.
go back to reference Lara HH, Ayala-Núñez NV, Ixtepan Turrent LC, Rodríguez Padilla C (2009) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRef Lara HH, Ayala-Núñez NV, Ixtepan Turrent LC, Rodríguez Padilla C (2009) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRef
67.
go back to reference Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29CrossRef Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29CrossRef
68.
go back to reference Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:843687CrossRef Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:843687CrossRef
69.
go back to reference Lombi E, Donner E, Scheckel KG, Sekine R, Lorenz C, Goetz NV, Nowack B (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRef Lombi E, Donner E, Scheckel KG, Sekine R, Lorenz C, Goetz NV, Nowack B (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRef
70.
go back to reference Luong ND, Lee Y, Nam J-D (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44:3116–3121CrossRef Luong ND, Lee Y, Nam J-D (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44:3116–3121CrossRef
71.
go back to reference Sabri MA, Umer A, Awan GH, Hassan MF, Hasnain A (2016) Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater Nanotechnol 6:29. doi:10.5772/62644 CrossRef Sabri MA, Umer A, Awan GH, Hassan MF, Hasnain A (2016) Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater Nanotechnol 6:29. doi:10.​5772/​62644 CrossRef
72.
go back to reference Basuny M, Ali IO, El-Gawad AA, Bakr MF, Salama TM (2015) A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications. J Sol-Gel Sci Technol 75(3):530–540. doi:10.1007/s10971-015-3723-3 CrossRef Basuny M, Ali IO, El-Gawad AA, Bakr MF, Salama TM (2015) A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications. J Sol-Gel Sci Technol 75(3):530–540. doi:10.​1007/​s10971-015-3723-3 CrossRef
74.
go back to reference Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6:2873–2877. doi:10.2147/IJN.S23945 Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6:2873–2877. doi:10.​2147/​IJN.​S23945
76.
go back to reference Lopez-Heras M, Theodorou IG, Leo BF, Ryan MP, Porter AE (2015) Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung. Environ Sci Nano 2(4):312–326. doi:10.1039/C5EN00051C CrossRef Lopez-Heras M, Theodorou IG, Leo BF, Ryan MP, Porter AE (2015) Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung. Environ Sci Nano 2(4):312–326. doi:10.​1039/​C5EN00051C CrossRef
77.
go back to reference Mollick MMR, Rana S, Dash SK, Chattopadhyay S, Bhowmick B, Maity D, Mondal D, Pattanayak S, Roy S, Chakraborty M, Chattopadhyay D (2015) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem, http://dx.doi.org/10.1016/j.arabjc.2015.04.033 Mollick MMR, Rana S, Dash SK, Chattopadhyay S, Bhowmick B, Maity D, Mondal D, Pattanayak S, Roy S, Chakraborty M, Chattopadhyay D (2015) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem, http://​dx.​doi.​org/​10.​1016/​j.​arabjc.​2015.​04.​033
79.
go back to reference Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017. doi:10.1021/es2038596 CrossRef Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017. doi:10.​1021/​es2038596 CrossRef
80.
go back to reference Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593CrossRef Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593CrossRef
81.
go back to reference Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611CrossRef Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611CrossRef
82.
go back to reference Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRef Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRef
83.
go back to reference Mastromatteo M, Conte A, Del Nobile MA (2010) Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Eng Rev 2:28–38CrossRef Mastromatteo M, Conte A, Del Nobile MA (2010) Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Eng Rev 2:28–38CrossRef
84.
go back to reference Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH et al (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285CrossRef Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH et al (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285CrossRef
85.
go back to reference Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807CrossRef Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807CrossRef
86.
go back to reference Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef
87.
go back to reference Muffly TM, Tizzano AP, Walters MD (2011) The history and evolution of sutures in pelvic surgery. J R Soc Med 104(3):107–112CrossRef Muffly TM, Tizzano AP, Walters MD (2011) The history and evolution of sutures in pelvic surgery. J R Soc Med 104(3):107–112CrossRef
88.
go back to reference Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846. doi:10.1021/cm500316k CrossRef Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846. doi:10.​1021/​cm500316k CrossRef
89.
go back to reference Nhi TT, Khon HC, Hoai NT, Bao BC, Quyen TN, Van Toi V, Hiep NT (2016) Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 27(10):156CrossRef Nhi TT, Khon HC, Hoai NT, Bao BC, Quyen TN, Van Toi V, Hiep NT (2016) Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 27(10):156CrossRef
90.
go back to reference Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO (2012) Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7(4):685–694. doi:10.1007/s11468-012-9359-z CrossRef Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO (2012) Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7(4):685–694. doi:10.​1007/​s11468-012-9359-z CrossRef
94.
go back to reference Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116CrossRef Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116CrossRef
95.
go back to reference Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705. doi:10.1088/0957-4484/19/24/245705 CrossRef Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705. doi:10.​1088/​0957-4484/​19/​24/​245705 CrossRef
96.
go back to reference Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavao MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 91:42–57CrossRef Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavao MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 91:42–57CrossRef
97.
go back to reference Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Expo Health 7(4):617–625CrossRef Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Expo Health 7(4):617–625CrossRef
98.
go back to reference Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chem 14:76CrossRef Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chem 14:76CrossRef
99.
go back to reference Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich LE, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6(7):2037–2050. doi:10.3390/polym6072037 CrossRef Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich LE, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6(7):2037–2050. doi:10.​3390/​polym6072037 CrossRef
100.
go back to reference Behra R, Sigg L, Clift MJD, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396. doi:10.1098/rsif.2013.0396 CrossRef Behra R, Sigg L, Clift MJD, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396. doi:10.​1098/​rsif.​2013.​0396 CrossRef
101.
go back to reference Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1(10):1381–1396. doi:10.1039/C2TB00301E CrossRef Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1(10):1381–1396. doi:10.​1039/​C2TB00301E CrossRef
102.
go back to reference Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRef Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRef
103.
go back to reference Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A Physicochem Eng Asp 367:31–40CrossRef Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A Physicochem Eng Asp 367:31–40CrossRef
104.
go back to reference Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350CrossRef Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350CrossRef
105.
go back to reference Richards MJ, Edwards JR, Culver RP (1999) Nasocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887–892CrossRef Richards MJ, Edwards JR, Culver RP (1999) Nasocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887–892CrossRef
106.
go back to reference Ayatollahi Mousavi SA, Salari S, Hadizadeh S (2016) Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum. Iran J Biotechnol 13(4):38–42. doi:10.15171/ijb.1302 CrossRef Ayatollahi Mousavi SA, Salari S, Hadizadeh S (2016) Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum. Iran J Biotechnol 13(4):38–42. doi:10.​15171/​ijb.​1302 CrossRef
107.
go back to reference Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983. doi:10.1039/C3RA44507K CrossRef Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983. doi:10.​1039/​C3RA44507K CrossRef
108.
go back to reference Yang SK, Li MY, Zhu X, Xu GQ, Wu JH (2015) Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO. J Phys Chem C 119(25):14312–14318. doi:10.1021/acs.jpcc.5b03521 Yang SK, Li MY, Zhu X, Xu GQ, Wu JH (2015) Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO. J Phys Chem C 119(25):14312–14318. doi:10.​1021/​acs.​jpcc.​5b03521
109.
go back to reference Lin S, Cheng Y, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28(9):4178–4186. doi:10.1021/la202884f CrossRef Lin S, Cheng Y, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28(9):4178–4186. doi:10.​1021/​la202884f CrossRef
110.
111.
go back to reference Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720CrossRef Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720CrossRef
112.
113.
go back to reference Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRef Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRef
114.
go back to reference Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRef Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRef
115.
go back to reference Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef
116.
go back to reference Suran M (2014) A little hard to swallow? The use of nanotechnology in the food industry might be both boon and bane to human health. EMBO Rep 15(6):638–641 Suran M (2014) A little hard to swallow? The use of nanotechnology in the food industry might be both boon and bane to human health. EMBO Rep 15(6):638–641
118.
go back to reference Tamoyo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409CrossRef Tamoyo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409CrossRef
119.
go back to reference Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69:164–168CrossRef Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69:164–168CrossRef
120.
go back to reference Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Int Sci 315:389–395CrossRef Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Int Sci 315:389–395CrossRef
121.
go back to reference Tulve NS, Stefaniak AB, Vance ME, Rogers K, Mwilu S, LeBouf RF, Schwegler-Berry D, Willis R, Thomas TA, Marr LC (2015) Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int J Hyg Environ Health 218(3):345–357CrossRef Tulve NS, Stefaniak AB, Vance ME, Rogers K, Mwilu S, LeBouf RF, Schwegler-Berry D, Willis R, Thomas TA, Marr LC (2015) Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int J Hyg Environ Health 218(3):345–357CrossRef
122.
go back to reference Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C (2014) In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res Lett 9(1):164–164. doi:10.1186/1556-276X-9-164 CrossRef Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C (2014) In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res Lett 9(1):164–164. doi:10.​1186/​1556-276X-9-164 CrossRef
124.
go back to reference Velazquez-Velazquez JL, Santos-Flores A, Araujo-Melendez J, Sanchez-Sanchez R, Velasquillo C, Gonzalez C, Martinez-Castanon G, Martinez-Gutierrez F (2015) Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Mater Sci Eng C 49:604–611CrossRef Velazquez-Velazquez JL, Santos-Flores A, Araujo-Melendez J, Sanchez-Sanchez R, Velasquillo C, Gonzalez C, Martinez-Castanon G, Martinez-Gutierrez F (2015) Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Mater Sci Eng C 49:604–611CrossRef
125.
go back to reference Velmurugan P, Lee SM, Cho M, Park JH, Seo SK, Myung H, Bang KS, Oh BT (2014) Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl Microbiol Biotechnol 98(19):8179–8189CrossRef Velmurugan P, Lee SM, Cho M, Park JH, Seo SK, Myung H, Bang KS, Oh BT (2014) Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl Microbiol Biotechnol 98(19):8179–8189CrossRef
126.
go back to reference Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178. doi:10.1128/AEM.02001-07 CrossRef Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178. doi:10.​1128/​AEM.​02001-07 CrossRef
127.
go back to reference Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45:4570–4578CrossRef Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45:4570–4578CrossRef
128.
go back to reference Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li F-M (2016) Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric For Meteorol 228-229:42–51CrossRef Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li F-M (2016) Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric For Meteorol 228-229:42–51CrossRef
129.
go back to reference White RJ (2001) An historical overview of the use of silver in wound management. Br J Community Nurs 6(1):4–8CrossRef White RJ (2001) An historical overview of the use of silver in wound management. Br J Community Nurs 6(1):4–8CrossRef
130.
go back to reference Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9(3):035005CrossRef Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9(3):035005CrossRef
131.
go back to reference Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F, Polte J (2013) Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater 25:4679–4689CrossRef Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F, Polte J (2013) Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater 25:4679–4689CrossRef
132.
go back to reference Xu Z, Mahalingam S, Rohn JL et al (2015) Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles. Mater Sci Eng C 56:195–204CrossRef Xu Z, Mahalingam S, Rohn JL et al (2015) Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles. Mater Sci Eng C 56:195–204CrossRef
133.
go back to reference Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472CrossRef Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472CrossRef
134.
go back to reference He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14(1):54. doi:10.1186/s12951-016-0202-0 CrossRef He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14(1):54. doi:10.​1186/​s12951-016-0202-0 CrossRef
136.
go back to reference Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 69:185–191CrossRef Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 69:185–191CrossRef
137.
138.
go back to reference Zhang L, Shen Y, Xie A, Li S, Jin B, Zhang B (2006) One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J Phys Chem B 110:6615CrossRef Zhang L, Shen Y, Xie A, Li S, Jin B, Zhang B (2006) One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J Phys Chem B 110:6615CrossRef
139.
go back to reference Ziabka M, Mertas A, Krol W, Bobrowski A, Chlopek J (2013) High density polyethylene containing antibacterial silver nanoparticles for medical applications. Macromol Sym 315:218–225CrossRef Ziabka M, Mertas A, Krol W, Bobrowski A, Chlopek J (2013) High density polyethylene containing antibacterial silver nanoparticles for medical applications. Macromol Sym 315:218–225CrossRef
140.
go back to reference Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:1–11CrossRef Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:1–11CrossRef
Metadata
Title
Nanostructured Functional Materials: Silver Nanoparticles in Polymer for the Generation of Antimicrobial Characteristics
Authors
Luiz Fernando Gorup
Francisco N. Souza Neto
Andressa M. Kubo
José Antonio Santos Souza
Renan Aparecido Fernandes
Gabriela Lopes Fernandes
Douglas Roberto Monteiro
Debora Barros Barbosa
Emerson Rodrigues Camargo
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53898-3_11

Premium Partners