Skip to main content
Top

2014 | OriginalPaper | Chapter

3. Nanostructured Materials

Authors : Joe Briscoe, Steve Dunn

Published in: Nanostructured Piezoelectric Energy Harvesters

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As discussed in the previous chapter, the study of piezoelectric materials dates back over a century, and a huge number of different materials displaying piezoelectric behaviour have been demonstrated. However, to date there has been relatively limited use of nanostructured piezoelectric materials in functioning devices. This is partly because understanding of the nanoscale size effects on ferro- and piezoelectricity is still being developed, as discussed in Sect. 2.3.4. It is also because production of nano-sized structures of piezoelectric materials often involves complex processing either due to the ternary, quaternary or higher number of elements combined in specific quantities, or the ceramic nature of a number of piezoelectric materials, requiring high processing temperatures. However, there are some exceptions to this, the most well known being zinc oxide (ZnO). As discussed below, a number of simple methods have been extensively studied for the production of nanoscale ZnO, and as such it is the most widely used material in piezoelectric nanogenerators. However, other well-known materials have also been investigated including lead zirconate titanate (PZT) and barium titanate. In this chapter the synthesis methods used to produce these materials are summarised, and details of the development and specific examples of piezoelectric nanogenerators are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRef Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRef
2.
go back to reference Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO - nanostructures, defects, and devices. Mater Today 10:40–48CrossRef Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO - nanostructures, defects, and devices. Mater Today 10:40–48CrossRef
3.
go back to reference Yi G-C, Wang C, Park WI (2005) ZnO nanorods: synthesis and characterization and applications. Semiconductor Sci Technol 20:S22–S34CrossRef Yi G-C, Wang C, Park WI (2005) ZnO nanorods: synthesis and characterization and applications. Semiconductor Sci Technol 20:S22–S34CrossRef
4.
go back to reference Jie J, Wang G, Chen Y, Han X, Wang Q, Xu B, Hou JG (2005) Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl Phys Lett 86:1–3 Jie J, Wang G, Chen Y, Han X, Wang Q, Xu B, Hou JG (2005) Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl Phys Lett 86:1–3
5.
go back to reference Conley JF Jr, Stecker L, Ono Y (2005) Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer. Nanotechnology 16:292–296CrossRef Conley JF Jr, Stecker L, Ono Y (2005) Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer. Nanotechnology 16:292–296CrossRef
6.
go back to reference Li C, Fang G, Su F, Li G, Wu X, Zhao X (2006) Synthesis and photoluminescence properties of vertically aligned ZnO nanorod-nanowall junction arrays on a ZnO-coated silicon substrate. Nanotechnology 17:3740–3744CrossRef Li C, Fang G, Su F, Li G, Wu X, Zhao X (2006) Synthesis and photoluminescence properties of vertically aligned ZnO nanorod-nanowall junction arrays on a ZnO-coated silicon substrate. Nanotechnology 17:3740–3744CrossRef
7.
go back to reference Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J (2005) Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c -oriented ZnO thin films without catalysts or additives. Appl Phys Lett 86:24108CrossRef Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J (2005) Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c -oriented ZnO thin films without catalysts or additives. Appl Phys Lett 86:24108CrossRef
8.
go back to reference Lévy-Clément C, Tena-Zaera R, Ryan MA, Katty A, Hodes G (2005) CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv Mater 17:1512–1515CrossRef Lévy-Clément C, Tena-Zaera R, Ryan MA, Katty A, Hodes G (2005) CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv Mater 17:1512–1515CrossRef
9.
go back to reference Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C, O’Regan B, Muñoz-Sanjosé V (2005) ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell. Thin Solid Films 483:372–377CrossRef Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C, O’Regan B, Muñoz-Sanjosé V (2005) ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell. Thin Solid Films 483:372–377CrossRef
11.
go back to reference Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466CrossRef Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466CrossRef
12.
go back to reference Vergés MA, Mifsud A, Serna CJ (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86:959–963CrossRef Vergés MA, Mifsud A, Serna CJ (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86:959–963CrossRef
14.
go back to reference Yang B, Lee C, Ho GW, Ong WL, Liu J, Yang C (2012) Modeling and experimental study of a low-frequency-vibration-based power generator using ZnO nanowire arrays. J Microelectromech Syst 21:776–778. doi:10.1109/JMEMS.2012.2190716 CrossRef Yang B, Lee C, Ho GW, Ong WL, Liu J, Yang C (2012) Modeling and experimental study of a low-frequency-vibration-based power generator using ZnO nanowire arrays. J Microelectromech Syst 21:776–778. doi:10.​1109/​JMEMS.​2012.​2190716 CrossRef
15.
go back to reference Tian J-H, Hu J, Li S-S, Zhang F, Liu J, Shi J, Li X, Tian Z-Q, Chen Y (2011) Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology 22:245601CrossRef Tian J-H, Hu J, Li S-S, Zhang F, Liu J, Shi J, Li X, Tian Z-Q, Chen Y (2011) Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology 22:245601CrossRef
16.
go back to reference Woo Cho J, Seung Lee C, Il Lee K, Min Kim S, Hyun Kim S, Keun Kim Y (2012) Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process. Appl Phys Lett 101:083905. doi:10.1063/1.4748289 CrossRef Woo Cho J, Seung Lee C, Il Lee K, Min Kim S, Hyun Kim S, Keun Kim Y (2012) Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process. Appl Phys Lett 101:083905. doi:10.​1063/​1.​4748289 CrossRef
17.
go back to reference No I-J, Jeong D-Y, Lee S, Kim S-H, Cho J-W, Shin P-K (2013) Enhanced charge generation of the ZnO nanowires/PZT hetero-junction based nanogenerator. Microelectron Eng 110: 282–287CrossRef No I-J, Jeong D-Y, Lee S, Kim S-H, Cho J-W, Shin P-K (2013) Enhanced charge generation of the ZnO nanowires/PZT hetero-junction based nanogenerator. Microelectron Eng 110: 282–287CrossRef
18.
go back to reference Govender K, Boyle DS, Kenway PB, O’Brien P (2004) Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem 14:2575–2591CrossRef Govender K, Boyle DS, Kenway PB, O’Brien P (2004) Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem 14:2575–2591CrossRef
19.
go back to reference Gavrilov SA, Gromov DG, Koz’min AM, Nazarkin MY, Timoshenkov SP, Shulyat’ev AS, Kochurina ES (2013) Piezoelectric energy nanoharvester based on an array of ZnO whisker nanocrystals and a flat copper electrode. Phys Solid State 55:1476–1479. doi:10.1134/S1063783413070135 CrossRef Gavrilov SA, Gromov DG, Koz’min AM, Nazarkin MY, Timoshenkov SP, Shulyat’ev AS, Kochurina ES (2013) Piezoelectric energy nanoharvester based on an array of ZnO whisker nanocrystals and a flat copper electrode. Phys Solid State 55:1476–1479. doi:10.​1134/​S106378341307013​5 CrossRef
21.
go back to reference Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5: 1231–1236CrossRef Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5: 1231–1236CrossRef
22.
go back to reference Choi M-Y, Choi D, Jin M-J, Kim I, Kim S-H, Choi J-Y, Lee SY, Kim JM, Kim S-W (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21:2185–2189. doi:10.1002/adma.200803605 CrossRef Choi M-Y, Choi D, Jin M-J, Kim I, Kim S-H, Choi J-Y, Lee SY, Kim JM, Kim S-W (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21:2185–2189. doi:10.​1002/​adma.​200803605 CrossRef
23.
go back to reference Choi D, Choi M-Y, Choi WM, Shin H-J, Park H-K, Seo J-S, Park J, Yoon S-M, Chae SJ, Lee YH, Kim S-W, Choi J-Y, Lee SY, Kim JM (2010) Fully rollable transparent nanogenerators based on graphene electrodes. Adv Mater 22:2187–2192. doi:10.1002/adma.200903815 CrossRef Choi D, Choi M-Y, Choi WM, Shin H-J, Park H-K, Seo J-S, Park J, Yoon S-M, Chae SJ, Lee YH, Kim S-W, Choi J-Y, Lee SY, Kim JM (2010) Fully rollable transparent nanogenerators based on graphene electrodes. Adv Mater 22:2187–2192. doi:10.​1002/​adma.​200903815 CrossRef
24.
go back to reference Choi D, Choi M-Y, Shin H-J, Yoon S-M, Seo J-S, Choi J-Y, Lee SY, Kim JM, Kim S-W (2010) Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J Phys Chem C 114:1379–1384. doi:10.1021/jp909713c CrossRef Choi D, Choi M-Y, Shin H-J, Yoon S-M, Seo J-S, Choi J-Y, Lee SY, Kim JM, Kim S-W (2010) Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J Phys Chem C 114:1379–1384. doi:10.​1021/​jp909713c CrossRef
25.
go back to reference Kim H, Kim SM, Son H, Kim H, Park B, Ku J, Sohn JI, Im K, Jang JE, Park J-J, Kim O, Cha S, Park YJ (2012) Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy Environ Sci 5:8932. doi:10.1039/c2ee22744d CrossRef Kim H, Kim SM, Son H, Kim H, Park B, Ku J, Sohn JI, Im K, Jang JE, Park J-J, Kim O, Cha S, Park YJ (2012) Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy Environ Sci 5:8932. doi:10.​1039/​c2ee22744d CrossRef
28.
go back to reference Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6: 6231–6235. doi:10.1021/nn3016585 CrossRef Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6: 6231–6235. doi:10.​1021/​nn3016585 CrossRef
29.
go back to reference Gu L, Cui N, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu J, Zhao Y, Ma F, Qin Y, Wang ZL (2013) Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett 13:91–94. doi:10.1021/nl303539c CrossRef Gu L, Cui N, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu J, Zhao Y, Ma F, Qin Y, Wang ZL (2013) Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett 13:91–94. doi:10.​1021/​nl303539c CrossRef
30.
go back to reference Lin Y, Liu Y, Sodano HA (2009) Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl Phys Lett 95:122901–122903CrossRef Lin Y, Liu Y, Sodano HA (2009) Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl Phys Lett 95:122901–122903CrossRef
31.
go back to reference Koka A, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288CrossRef Koka A, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288CrossRef
35.
36.
go back to reference Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–105CrossRef Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–105CrossRef
38.
go back to reference Gao Y, Wang ZL (2007) Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7:2499–2505. doi:10.1021/nl071310j CrossRef Gao Y, Wang ZL (2007) Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7:2499–2505. doi:10.​1021/​nl071310j CrossRef
39.
40.
go back to reference Liu J, Fei P, Song J, Wang X, Lao C, Tummala R, Wang ZL (2008) Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett 8:328–332. doi:10.1021/nl0728470 CrossRef Liu J, Fei P, Song J, Wang X, Lao C, Tummala R, Wang ZL (2008) Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett 8:328–332. doi:10.​1021/​nl0728470 CrossRef
41.
go back to reference Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813CrossRef Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813CrossRef
42.
go back to reference Zhang J, Li M, Yu L, Liu L, Zhang H, Yang Z (2009) Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach. Appl Phys A Mater Sci Process 97:869–876CrossRef Zhang J, Li M, Yu L, Liu L, Zhang H, Yang Z (2009) Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach. Appl Phys A Mater Sci Process 97:869–876CrossRef
43.
go back to reference Xu C, Wang X, Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872. doi:10.1021/ja810158x CrossRef Xu C, Wang X, Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872. doi:10.​1021/​ja810158x CrossRef
44.
go back to reference Saravanakumar B, Mohan R, Thiyagarajan K, Kim S-J (2013) Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv 3:16646. doi:10.1039/c3ra40447a CrossRef Saravanakumar B, Mohan R, Thiyagarajan K, Kim S-J (2013) Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv 3:16646. doi:10.​1039/​c3ra40447a CrossRef
45.
go back to reference Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366–373CrossRef Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366–373CrossRef
46.
47.
go back to reference Lee M, Bae J, Lee J, Lee C-S, Hong S, Wang ZL (2011) Self-powered environmental sensor system driven by nanogenerators. Energy Environ Sci 4:3359–3363CrossRef Lee M, Bae J, Lee J, Lee C-S, Hong S, Wang ZL (2011) Self-powered environmental sensor system driven by nanogenerators. Energy Environ Sci 4:3359–3363CrossRef
51.
52.
go back to reference Briscoe J, Jalali N, Woolliams P, Stewart M, Weaver PM, Cain M, Dunn S (2013) Measurement techniques for piezoelectric nanogenerators. Energy Environ Sci 6:3035–3045. doi:10.1039/C3EE41889H CrossRef Briscoe J, Jalali N, Woolliams P, Stewart M, Weaver PM, Cain M, Dunn S (2013) Measurement techniques for piezoelectric nanogenerators. Energy Environ Sci 6:3035–3045. doi:10.​1039/​C3EE41889H CrossRef
54.
go back to reference Bai S, Zhang L, Xu Q, Zheng Y, Qin Y, Wang ZL (2013) Two dimensional woven nanogenerator. Nano Energy 2:749–753CrossRef Bai S, Zhang L, Xu Q, Zheng Y, Qin Y, Wang ZL (2013) Two dimensional woven nanogenerator. Nano Energy 2:749–753CrossRef
55.
go back to reference Qiu Y, Zhang H, Hu L, Yang D, Wang L, Wang B, Ji J, Liu G, Liu X, Lin J, Li F, Han S (2012) Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale 4:6568–6573. doi:10.1039/C2NR31031G CrossRef Qiu Y, Zhang H, Hu L, Yang D, Wang L, Wang B, Ji J, Liu G, Liu X, Lin J, Li F, Han S (2012) Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale 4:6568–6573. doi:10.​1039/​C2NR31031G CrossRef
56.
go back to reference Khan A, Abbasi MA, Hussain M, Ibupoto ZH, Wissting J, Nur O, Willander M (2012) Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl Phys Lett 101:193506. doi:10.1063/1.4766921 CrossRef Khan A, Abbasi MA, Hussain M, Ibupoto ZH, Wissting J, Nur O, Willander M (2012) Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl Phys Lett 101:193506. doi:10.​1063/​1.​4766921 CrossRef
57.
go back to reference Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRef
58.
go back to reference Kim K-H, Kumar B, Lee KY, Park H-K, Lee J-H, Lee HH, Jun H, Lee D, Kim S-W (2013) Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation. Sci Rep 3 Kim K-H, Kumar B, Lee KY, Park H-K, Lee J-H, Lee HH, Jun H, Lee D, Kim S-W (2013) Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation. Sci Rep 3
59.
go back to reference Gao Y, Zhai Q, Barrett R, Dalal NS, Kroto HW, Acquah SFA (2013) Piezoelectric enhanced cross-linked multi-walled carbon nanotube paper. Carbon 64:544–547CrossRef Gao Y, Zhai Q, Barrett R, Dalal NS, Kroto HW, Acquah SFA (2013) Piezoelectric enhanced cross-linked multi-walled carbon nanotube paper. Carbon 64:544–547CrossRef
60.
go back to reference Sun H, Tian H, Yang Y, Xie D, Zhang Y-C, Liu X, Ma S, Zhao H-M, Ren T-L (2013) A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube. Nanoscale 5:6117–6123. doi:10.1039/c3nr00866e CrossRef Sun H, Tian H, Yang Y, Xie D, Zhang Y-C, Liu X, Ma S, Zhao H-M, Ren T-L (2013) A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube. Nanoscale 5:6117–6123. doi:10.​1039/​c3nr00866e CrossRef
62.
go back to reference Park K-I, Xu S, Liu Y, Hwang G-T, Kang S-JL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943. doi:10.1021/nl102959k CrossRef Park K-I, Xu S, Liu Y, Hwang G-T, Kang S-JL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943. doi:10.​1021/​nl102959k CrossRef
63.
go back to reference Seol M-L, Im H, Moon D-I, Woo J-H, Kim D, Choi S-J, Choi Y-K (2013) Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array. ACS Nano 7:10773–10779. doi:10.1021/nn403940v CrossRef Seol M-L, Im H, Moon D-I, Woo J-H, Kim D, Choi S-J, Choi Y-K (2013) Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array. ACS Nano 7:10773–10779. doi:10.​1021/​nn403940v CrossRef
64.
go back to reference Kwon J, Seung W, Sharma BK, Kim S-W, Ahn J-H (2012) A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ Sci 5:8970–8975. doi:10.1039/c2ee22251e CrossRef Kwon J, Seung W, Sharma BK, Kim S-W, Ahn J-H (2012) A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ Sci 5:8970–8975. doi:10.​1039/​c2ee22251e CrossRef
66.
go back to reference Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef
67.
go back to reference Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:43001CrossRef Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:43001CrossRef
68.
go back to reference Chen X, Xu S, Yao N, Xu W, Shi Y (2009) Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl Phys Lett 94:253113. doi:10.1063/1.3157837 CrossRef Chen X, Xu S, Yao N, Xu W, Shi Y (2009) Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl Phys Lett 94:253113. doi:10.​1063/​1.​3157837 CrossRef
69.
go back to reference Cui N, Wu W, Zhao Y, Bai S, Meng L, Qin Y, Wang ZL (2012) Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett 12:3701–3705. doi:10.1021/nl301490q CrossRef Cui N, Wu W, Zhao Y, Bai S, Meng L, Qin Y, Wang ZL (2012) Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett 12:3701–3705. doi:10.​1021/​nl301490q CrossRef
72.
73.
go back to reference Giocondi JL, Rohrer GS (2001) Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J Phys Chem B 105:8275–8277. doi:10.1021/jp011804j CrossRef Giocondi JL, Rohrer GS (2001) Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J Phys Chem B 105:8275–8277. doi:10.​1021/​jp011804j CrossRef
74.
go back to reference Kalinin SV, Bonnell DA, Alvarez T, Lei X, Hu Z, Ferris JH, Zhang Q, Dunn S (2002) Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures. Nano Lett 2:589–593. doi:10.1021/nl025556u CrossRef Kalinin SV, Bonnell DA, Alvarez T, Lei X, Hu Z, Ferris JH, Zhang Q, Dunn S (2002) Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures. Nano Lett 2:589–593. doi:10.​1021/​nl025556u CrossRef
75.
go back to reference Dunn S, Jones PM, Gallardo DE (2007) Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films. J Am Chem Soc 129:8724–8728. doi:10.1021/ja071451n CrossRef Dunn S, Jones PM, Gallardo DE (2007) Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films. J Am Chem Soc 129:8724–8728. doi:10.​1021/​ja071451n CrossRef
76.
go back to reference Dunn S, Tiwari D, Jones PM, Gallardo DE (2007) Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver. J Mater Chem 17:4460–4463CrossRef Dunn S, Tiwari D, Jones PM, Gallardo DE (2007) Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver. J Mater Chem 17:4460–4463CrossRef
78.
go back to reference Fridkin VM (1980) Ferroelectric semiconductors. 318 Fridkin VM (1980) Ferroelectric semiconductors. 318
80.
go back to reference Shao Z, Wen L, Wu D, Zhang X, Chang S, Qin S (2010) Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod. J Appl Phys 108:124312. doi:10.1063/1.3517828 CrossRef Shao Z, Wen L, Wu D, Zhang X, Chang S, Qin S (2010) Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod. J Appl Phys 108:124312. doi:10.​1063/​1.​3517828 CrossRef
81.
go back to reference Wang F, Seo J-H, Bayerl D, Shi J, Mi H, Ma Z, Zhao D, Shuai Y, Zhou W, Wang X (2011) An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22:225602CrossRef Wang F, Seo J-H, Bayerl D, Shi J, Mi H, Ma Z, Zhao D, Shuai Y, Zhou W, Wang X (2011) An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22:225602CrossRef
82.
go back to reference Pham TT, Lee KY, Lee J-H, Kim K-H, Shin K-S, Gupta MK, Kumar B, Kim S-W (2013) Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential. Energy Environ Sci 6:841–846CrossRef Pham TT, Lee KY, Lee J-H, Kim K-H, Shin K-S, Gupta MK, Kumar B, Kim S-W (2013) Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential. Energy Environ Sci 6:841–846CrossRef
83.
go back to reference Keawboonchuay C, Engel TG (2003) Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions. IEEE Trans Ultrason Ferroelectr Freq Control 50:1377–1382. doi:10.1109/TUFFC.2003.1244755 CrossRef Keawboonchuay C, Engel TG (2003) Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions. IEEE Trans Ultrason Ferroelectr Freq Control 50:1377–1382. doi:10.​1109/​TUFFC.​2003.​1244755 CrossRef
84.
go back to reference Sohn JI, Cha SN, Song BG, Lee S, Kim SM, Ku J, Kim HJ, Park YJ, Choi BL, Wang ZL, Kim JM, Kim K (2013) Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ Sci 6:97–104CrossRef Sohn JI, Cha SN, Song BG, Lee S, Kim SM, Ku J, Kim HJ, Park YJ, Choi BL, Wang ZL, Kim JM, Kim K (2013) Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ Sci 6:97–104CrossRef
85.
go back to reference Lee S, Lee J, Ko W, Cha S, Sohn J, Kim J, Park J, Park Y, Hong J (2013) Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications. Nanoscale 5:9609–9614. doi:10.1039/c3nr03402j CrossRef Lee S, Lee J, Ko W, Cha S, Sohn J, Kim J, Park J, Park Y, Hong J (2013) Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications. Nanoscale 5:9609–9614. doi:10.​1039/​c3nr03402j CrossRef
86.
go back to reference Song J, Wang X, Liu J, Liu H, Li Y, Wang ZL (2008) Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer. Nano Lett 8:203–207. doi:10.1021/nl072440v CrossRef Song J, Wang X, Liu J, Liu H, Li Y, Wang ZL (2008) Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer. Nano Lett 8:203–207. doi:10.​1021/​nl072440v CrossRef
87.
go back to reference Lin L, Jing Q, Zhang Y, Hu Y, Wang S, Bando Y, Han RPS, Wang ZL (2013) An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. Energy Environ Sci 6:1164–1169. doi:10.1039/C3EE00107E CrossRef Lin L, Jing Q, Zhang Y, Hu Y, Wang S, Bando Y, Han RPS, Wang ZL (2013) An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. Energy Environ Sci 6:1164–1169. doi:10.​1039/​C3EE00107E CrossRef
90.
go back to reference Dicken J, Mitcheson PD, Stoianov I, Yeatman EM (2012) Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron 27:4514–4529. doi:10.1109/TPEL.2012.2192291 CrossRef Dicken J, Mitcheson PD, Stoianov I, Yeatman EM (2012) Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron 27:4514–4529. doi:10.​1109/​TPEL.​2012.​2192291 CrossRef
94.
go back to reference Wooldridge J, Blackburn JF, McCartney NL, Stewart M, Weaver P, Cain MG (2010) Small-scale piezoelectric devices: pyroelectric contributions to the piezoelectric response. J Appl Phys 107:104118. doi:10.1063/1.3380824 CrossRef Wooldridge J, Blackburn JF, McCartney NL, Stewart M, Weaver P, Cain MG (2010) Small-scale piezoelectric devices: pyroelectric contributions to the piezoelectric response. J Appl Phys 107:104118. doi:10.​1063/​1.​3380824 CrossRef
Metadata
Title
Nanostructured Materials
Authors
Joe Briscoe
Steve Dunn
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-09632-2_3