Skip to main content
Top

2017 | OriginalPaper | Chapter

14. Nanostructured Polymers and Polymer/Inorganic Nanocomposites for Thermoelectric Applications

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoelectric generators (TEGs) are being considered as one of the most promising green technology to convert the waste energy into useful electricity. Conjugated polymers and their nanostructures possess high electrical conductivity, low thermal conductivity, and reasonable Seebeck coefficient, which can meet the requirements for high-efficiency TEGs. This chapter focuses on recent progress in the development of nanostructured polymers and polymer/inorganic nanocomposites with multi-dimensional nanostructures (0D, 1D to 2D) for thermoelectric applications. The challenges and perspectives in the emerging field of nanostructured polymers are also involved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference a) Jaworski CM, Yang J, Mack S et al (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater 9:898–903; b) Uchida K, Takahashi S, Harii K et al (2008) Observation of the spin Seebeck effect. Nature 455:778–781; c) Geballe TH, Hull GW (1955) Seebeck effect in silicon. Phys Rev 98(4):940; d) Geballe TH, Hull GW (1954) Seebeck effect in germanium. Phys Rev 94(5):1134 a) Jaworski CM, Yang J, Mack S et al (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater 9:898–903; b) Uchida K, Takahashi S, Harii K et al (2008) Observation of the spin Seebeck effect. Nature 455:778–781; c) Geballe TH, Hull GW (1955) Seebeck effect in silicon. Phys Rev 98(4):940; d) Geballe TH, Hull GW (1954) Seebeck effect in germanium. Phys Rev 94(5):1134
2.
go back to reference a) Yang J, Caillat T (2006) Thermoelectric materials for space and automotive power generation. MRS Bull 31(03):224–229; b) Xie J, Zhao C, Lin Z et al (2016) Nanostructured conjugated polymers for energy-related applications beyond solar cells. Chem Asian J 11(10):1489–1511 a) Yang J, Caillat T (2006) Thermoelectric materials for space and automotive power generation. MRS Bull 31(03):224–229; b) Xie J, Zhao C, Lin Z et al (2016) Nanostructured conjugated polymers for energy-related applications beyond solar cells. Chem Asian J 11(10):1489–1511
3.
go back to reference a) Venkatasubramanian R, Siivola E, Colpitts T et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602; b) Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639 a) Venkatasubramanian R, Siivola E, Colpitts T et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602; b) Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639
4.
go back to reference a) Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362; b) Zhou C, Morelli D, Zhou X et al (2011) Thermoelectric properties of P-type Yb-filled skutterudite Ybx Fey Co4-y Sb12. Intermetallics 19(10):1390–1393 a) Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362; b) Zhou C, Morelli D, Zhou X et al (2011) Thermoelectric properties of P-type Yb-filled skutterudite Ybx Fey Co4-y Sb12. Intermetallics 19(10):1390–1393
5.
go back to reference a) Wu D, Zhao LD, Hao S et al (2014) Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 136(32):11412–11419; b) Zhao LD, Zhang X, Wu H et al (2016) Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc 138(7):2366–2373 a) Wu D, Zhao LD, Hao S et al (2014) Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 136(32):11412–11419; b) Zhao LD, Zhang X, Wu H et al (2016) Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc 138(7):2366–2373
6.
go back to reference a) Dughaish ZH (2002) Lead telluride as a thermoelectric material for thermoelectric power generation. Phys B Condens Matter 322(1):205–223; b) Zhao LD, Hao S, Lo SH et al (2013) High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J Am Chem Soc 135(19):7364–7370; c) Yim WM, Rosi FD (1972) Compound tellurides and their alloys for peltier cooling—A review. Solid State Electron 15(10):1121–1140 a) Dughaish ZH (2002) Lead telluride as a thermoelectric material for thermoelectric power generation. Phys B Condens Matter 322(1):205–223; b) Zhao LD, Hao S, Lo SH et al (2013) High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J Am Chem Soc 135(19):7364–7370; c) Yim WM, Rosi FD (1972) Compound tellurides and their alloys for peltier cooling—A review. Solid State Electron 15(10):1121–1140
7.
go back to reference a) Boukai AI, Bunimovich Y, TahirKheli J et al (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171; b) Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731; c) Hicks LD, Harman TC, Sun X et al (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53(16):10493–10496; d) Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167 a) Boukai AI, Bunimovich Y, TahirKheli J et al (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171; b) Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731; c) Hicks LD, Harman TC, Sun X et al (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53(16):10493–10496; d) Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167
8.
go back to reference Harman TC, Taylor PJ, Walsh MP et al (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297(5590):2229–2232CrossRef Harman TC, Taylor PJ, Walsh MP et al (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297(5590):2229–2232CrossRef
9.
go back to reference Wang RY, Feser JP, Lee JS et al (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8(8):2283–2288CrossRef Wang RY, Feser JP, Lee JS et al (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8(8):2283–2288CrossRef
10.
go back to reference Harada K, Sumino M, Adachi C et al (2010) Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). Appl Phys Lett 96(25):253–304CrossRef Harada K, Sumino M, Adachi C et al (2010) Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). Appl Phys Lett 96(25):253–304CrossRef
11.
go back to reference a) Hong C T, Lee W, Kang Y H et al (2015) Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J Mater Chem A 3(23):12314–12319; b) Bounioux C, DíazChao P, CampoyQuiles M et al (2013) Thermoelectric composites of poly (3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 6(3):918–925; c) Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv mater 22(4):535–539 a) Hong C T, Lee W, Kang Y H et al (2015) Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J Mater Chem A 3(23):12314–12319; b) Bounioux C, DíazChao P, CampoyQuiles M et al (2013) Thermoelectric composites of poly (3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 6(3):918–925; c) Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv mater 22(4):535–539
12.
go back to reference a) Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581; b) Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448 a) Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581; b) Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448
13.
go back to reference a) Liu H, Wang J, Hu X et al (2002) Structure and electronic transport properties of polyaniline/NaFe 4P composite. Chem Phys Lett 352(3):185–190; b) Yao Q, Chen L, Qu S (2015) Conducting polymer-based nanocomposites for thermoelectric applications fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties and applications, pp 339–378; c) He M, Qiu F, Lin Z (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6(5):1352–1361; d) Du Y, Shen S Z, Cai K et al (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841 a) Liu H, Wang J, Hu X et al (2002) Structure and electronic transport properties of polyaniline/NaFe 4P composite. Chem Phys Lett 352(3):185–190; b) Yao Q, Chen L, Qu S (2015) Conducting polymer-based nanocomposites for thermoelectric applications fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties and applications, pp 339–378; c) He M, Qiu F, Lin Z (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6(5):1352–1361; d) Du Y, Shen S Z, Cai K et al (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841
14.
go back to reference a) Sun J, Yeh ML, Jung BJ et al (2010) Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states. Macromolecules 43(6):2897–2903; b) Zhang Q, Sun Y, Xu W et al (2014) What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47(2):609–615; c) Poehler TO, Katz HE (2012) Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ Sci 5(8):8110–8115; d) Park T, Park C, Kim B et al (2013) Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ Sci 6(3):788–792 a) Sun J, Yeh ML, Jung BJ et al (2010) Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states. Macromolecules 43(6):2897–2903; b) Zhang Q, Sun Y, Xu W et al (2014) What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47(2):609–615; c) Poehler TO, Katz HE (2012) Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ Sci 5(8):8110–8115; d) Park T, Park C, Kim B et al (2013) Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ Sci 6(3):788–792
15.
go back to reference a) Moses D, Denenstein A (1984) Experimental determination of the thermal conductivity of a conducting polymer: Pure and heavily doped polyacetylene. Phys Rev B 30(4): 2090–2097; b) Costa ACR, Siqueira AF (1996) Exact optimum design of segmented thermoelectric generators. J Appl Phys 80:5579–5582 a) Moses D, Denenstein A (1984) Experimental determination of the thermal conductivity of a conducting polymer: Pure and heavily doped polyacetylene. Phys Rev B 30(4): 2090–2097; b) Costa ACR, Siqueira AF (1996) Exact optimum design of segmented thermoelectric generators. J Appl Phys 80:5579–5582
16.
go back to reference a) Yang J, Yip HL, Jen AKY (2013) Rational design of advanced thermoelectric materials. Adv Energy Mater 3(5):549–565; b) Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362 a) Yang J, Yip HL, Jen AKY (2013) Rational design of advanced thermoelectric materials. Adv Energy Mater 3(5):549–565; b) Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362
17.
go back to reference a) Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials a mini review. Synth Met 162(11):912–917; b) Zhang Q, Sun Y, Xu W et al (2014) Organic thermoelectric materials Emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26(40):6829–6851 a) Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials a mini review. Synth Met 162(11):912–917; b) Zhang Q, Sun Y, Xu W et al (2014) Organic thermoelectric materials Emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26(40):6829–6851
18.
go back to reference Bubnova O, Khan ZU, Wang H et al (2014) Semi-metallic polymers. Nat Mater 13(2):190–194CrossRef Bubnova O, Khan ZU, Wang H et al (2014) Semi-metallic polymers. Nat Mater 13(2):190–194CrossRef
19.
go back to reference a) Wu J, Zhang Q (2015) Thermoelectric polymers. Encycl Polym Nanomater 2510–2516; b) Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4(19):7091–7106; c) Wu J, Sun Y, Pei WB et al (2014) Polypyrrole nanotube film for flexible thermoelectric application. Synthetic Metals 196:173–177; d) Wu J, Sun Y, Xu W et al (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Metals 189:177–182 a) Wu J, Zhang Q (2015) Thermoelectric polymers. Encycl Polym Nanomater 2510–2516; b) Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4(19):7091–7106; c) Wu J, Sun Y, Pei WB et al (2014) Polypyrrole nanotube film for flexible thermoelectric application. Synthetic Metals 196:173–177; d) Wu J, Sun Y, Xu W et al (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Metals 189:177–182
20.
go back to reference a) Wu J, Sun Y, Xu W et al (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Metals 189:177–182; b) Cademartiri L, Ozin GA (2009) Ultrathin nanowires a materials chemistry perspective. Adv Mater 21(9):1013–1020 a) Wu J, Sun Y, Xu W et al (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Metals 189:177–182; b) Cademartiri L, Ozin GA (2009) Ultrathin nanowires a materials chemistry perspective. Adv Mater 21(9):1013–1020
21.
go back to reference a) Dresselhaus MS, Chen G, Tang MY et al (2004) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053; b) Hsu KF, Loo S, Guo F et al (2004) Cubic agb msbte bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821 a) Dresselhaus MS, Chen G, Tang MY et al (2004) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053; b) Hsu KF, Loo S, Guo F et al (2004) Cubic agb msbte bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821
22.
go back to reference Pintér E, Fekete ZA, Berkesi O et al (2007) Characterization of poly (3-octylthiophene)/silver nanocomposites prepared by solution doping. J Phys Chem C 111(32):11872–11878CrossRef Pintér E, Fekete ZA, Berkesi O et al (2007) Characterization of poly (3-octylthiophene)/silver nanocomposites prepared by solution doping. J Phys Chem C 111(32):11872–11878CrossRef
23.
go back to reference Liu Y, Lin Y, Shi Z et al (2005) Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J Am Cer Soc 88(5):1337–1340CrossRef Liu Y, Lin Y, Shi Z et al (2005) Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J Am Cer Soc 88(5):1337–1340CrossRef
24.
go back to reference Liu C, Jiang F, Huang M et al (2011) Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials. J Electron Mater 40(5):948–952CrossRef Liu C, Jiang F, Huang M et al (2011) Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials. J Electron Mater 40(5):948–952CrossRef
25.
go back to reference Wang YY, Cai KF, Yin JL et al (2012) One-pot fabrication and thermoelectric properties of Ag Te–polyaniline core–shell nanostructures. Mater Chem Phys 133(2):808–812CrossRef Wang YY, Cai KF, Yin JL et al (2012) One-pot fabrication and thermoelectric properties of Ag Te–polyaniline core–shell nanostructures. Mater Chem Phys 133(2):808–812CrossRef
26.
go back to reference Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888):554–557CrossRef Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888):554–557CrossRef
27.
go back to reference Wang YY, Cai KF, Yin JL et al (2010) Research progress on polymer-inorganic thermoelectric nanocomposite materials. J Nanopart Res 13:533–539CrossRef Wang YY, Cai KF, Yin JL et al (2010) Research progress on polymer-inorganic thermoelectric nanocomposite materials. J Nanopart Res 13:533–539CrossRef
28.
go back to reference Zhao XB, Hu SH, Zhao MJ et al (2002) Thermoelectric properties of polyaniline hybrids prepared by mechanical blending. Mater Lett 52(3):147–149CrossRef Zhao XB, Hu SH, Zhao MJ et al (2002) Thermoelectric properties of polyaniline hybrids prepared by mechanical blending. Mater Lett 52(3):147–149CrossRef
29.
go back to reference Toshima N, Imai M, Ichikawa S (2010) Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth (III) telluride nanoparticles. J Elect Mater 40(5):898–902CrossRef Toshima N, Imai M, Ichikawa S (2010) Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth (III) telluride nanoparticles. J Elect Mater 40(5):898–902CrossRef
30.
go back to reference Song H, Liu C, Zhu H et al (2013) Improved thermoelectric performance of free-standing PEDOT: PSS/Bi2Te3 films with low thermal conductivity. J Elect Mater 42(6):1268–1274CrossRef Song H, Liu C, Zhu H et al (2013) Improved thermoelectric performance of free-standing PEDOT: PSS/Bi2Te3 films with low thermal conductivity. J Elect Mater 42(6):1268–1274CrossRef
31.
go back to reference Zhang B, Sun J, Katz HE et al (2010) Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2(11):3170–3178CrossRef Zhang B, Sun J, Katz HE et al (2010) Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2(11):3170–3178CrossRef
32.
go back to reference Horne RA (1959) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. J Appl Phys 30:393–397CrossRef Horne RA (1959) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. J Appl Phys 30:393–397CrossRef
33.
go back to reference See KC, Feser JP, Chen CE et al (2010) Water-processable polymer–nanocrystal hybrids for thermoelectrics. Nano Lett 10(11):4664–4667CrossRef See KC, Feser JP, Chen CE et al (2010) Water-processable polymer–nanocrystal hybrids for thermoelectrics. Nano Lett 10(11):4664–4667CrossRef
34.
go back to reference Coates NE, Yee SK, McCulloch B et al (2013) Effect of interfacial properties on polymer–nanocrystal thermoelectric transport. Adv Mater 25(11):1629–1633CrossRef Coates NE, Yee SK, McCulloch B et al (2013) Effect of interfacial properties on polymer–nanocrystal thermoelectric transport. Adv Mater 25(11):1629–1633CrossRef
35.
go back to reference Uvarov NF (2000) Grundlagen der strahlentherapeutischen methoden[m]/allgemeine strahlentherapeutische methodik/methods and procedures of radiation therapy. Solid State Ion 136–137:1267–1272CrossRef Uvarov NF (2000) Grundlagen der strahlentherapeutischen methoden[m]/allgemeine strahlentherapeutische methodik/methods and procedures of radiation therapy. Solid State Ion 136–137:1267–1272CrossRef
36.
go back to reference Ma S, Anderson K, Guo LA et al (2014) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Appl Phys Lett 105:905–922 Ma S, Anderson K, Guo LA et al (2014) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Appl Phys Lett 105:905–922
37.
go back to reference Stallinga P (2011) Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory. Adv Mater 23(30):3356–3362CrossRef Stallinga P (2011) Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory. Adv Mater 23(30):3356–3362CrossRef
38.
go back to reference Chen B, Uher C, Iordanidis L et al (1997) Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6. 33S10 and K2Bi8S13. Chem Mater 9(7):1655–1658CrossRef Chen B, Uher C, Iordanidis L et al (1997) Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6. 33S10 and K2Bi8S13. Chem Mater 9(7):1655–1658CrossRef
39.
go back to reference Wang YY, Cai KF, Yao X (2012) Adsorptive remediation of environmental pollutants using novel graphene-based nano materials. J Nanopart Res 14:1–7 Wang YY, Cai KF, Yao X (2012) Adsorptive remediation of environmental pollutants using novel graphene-based nano materials. J Nanopart Res 14:1–7
40.
go back to reference Wang Y, Cai K, Yao X (2011) Facile fabrication and thermoelectric properties of Pb2Te3-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3(4):1163–1166CrossRef Wang Y, Cai K, Yao X (2011) Facile fabrication and thermoelectric properties of Pb2Te3-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3(4):1163–1166CrossRef
41.
go back to reference a) Cho B, Park KS, Baek J et al (2014) Single-crystal poly(3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett 14(6):3321–3327; b) Huang J, Virji S, Weiller BH et al (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315; c) Su K, Nuraje N, Zhang L et al (2007) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization crystallization of 3, 4-ethylenedioxythiophene. Adv Mater 19(5):669–672 a) Cho B, Park KS, Baek J et al (2014) Single-crystal poly(3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett 14(6):3321–3327; b) Huang J, Virji S, Weiller BH et al (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315; c) Su K, Nuraje N, Zhang L et al (2007) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization crystallization of 3, 4-ethylenedioxythiophene. Adv Mater 19(5):669–672
42.
go back to reference Vineis CJ, Shakouri A, Majumdar A et al (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22(36):3970–3980CrossRef Vineis CJ, Shakouri A, Majumdar A et al (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22(36):3970–3980CrossRef
43.
go back to reference Zaia EW, Sahu A, Zhou P et al (2016) Carrier scattering at alloy nanointerfaces enhances power factor in PEDOT:PSS hybrid thermoelectrics. Nano Lett 16(5):3352–3359CrossRef Zaia EW, Sahu A, Zhou P et al (2016) Carrier scattering at alloy nanointerfaces enhances power factor in PEDOT:PSS hybrid thermoelectrics. Nano Lett 16(5):3352–3359CrossRef
44.
go back to reference Choi J, Lee JY, Lee SS et al (2016) Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Adv Energy Mater 150(2):181–189 Choi J, Lee JY, Lee SS et al (2016) Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Adv Energy Mater 150(2):181–189
45.
go back to reference Li Y, Zhao Q, Wang Y et al (2011) Synthesis and characterization of Bi2Te3/polyaniline composites. Mater Sci Semicond Process 14(3):219–222CrossRef Li Y, Zhao Q, Wang Y et al (2011) Synthesis and characterization of Bi2Te3/polyaniline composites. Mater Sci Semicond Process 14(3):219–222CrossRef
46.
go back to reference Du Y, Cai KF, Chen S et al (2014) Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl Mater Interfaces 6(8):5735–5743CrossRef Du Y, Cai KF, Chen S et al (2014) Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl Mater Interfaces 6(8):5735–5743CrossRef
47.
go back to reference Ren L, Qi X, Liu Y et al (2012) Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J Mater Chem 22(11):4921–4926CrossRef Ren L, Qi X, Liu Y et al (2012) Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J Mater Chem 22(11):4921–4926CrossRef
48.
go back to reference Mehta RJ, Zhang Y, Karthik C et al (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater 11(3):233–240CrossRef Mehta RJ, Zhang Y, Karthik C et al (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater 11(3):233–240CrossRef
49.
go back to reference Huang W, Luo X, Gan CK et al (2014) Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys Chem Chem Phys 16(22):10866–10874CrossRef Huang W, Luo X, Gan CK et al (2014) Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys Chem Chem Phys 16(22):10866–10874CrossRef
50.
go back to reference Radisavljevic B, RadenovicA Brivio J et al (2011) High-quality BN WSe2 BN heterostructure and its quantum oscillations. Nat Nanotechnol 6:147–150CrossRef Radisavljevic B, RadenovicA Brivio J et al (2011) High-quality BN WSe2 BN heterostructure and its quantum oscillations. Nat Nanotechnol 6:147–150CrossRef
51.
go back to reference a) Liu X, Zhang G, Pei QX et al (2013) Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl Phys Lett 103(13):113–133; b) Babaei H, Khodadadi JM, Sinha S (2014) Large theoretical thermoelectric power factor of suspended single-layer MoS2. Appl Phys Lett 105(19):193901 a) Liu X, Zhang G, Pei QX et al (2013) Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl Phys Lett 103(13):113–133; b) Babaei H, Khodadadi JM, Sinha S (2014) Large theoretical thermoelectric power factor of suspended single-layer MoS2. Appl Phys Lett 105(19):193901
52.
go back to reference Mansfield R, Salam SA (1953) Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Proc Phys Soc 66:377CrossRef Mansfield R, Salam SA (1953) Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Proc Phys Soc 66:377CrossRef
53.
go back to reference Kanatzidis MG, Bissessur R, DeGroot DC et al (1993) New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in molybdenum disulfide. Chem Mater 5(5):595–596CrossRef Kanatzidis MG, Bissessur R, DeGroot DC et al (1993) New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in molybdenum disulfide. Chem Mater 5(5):595–596CrossRef
54.
go back to reference Jiang F, Xiong J, Zhou W et al (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4(14):5265–5273CrossRef Jiang F, Xiong J, Zhou W et al (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4(14):5265–5273CrossRef
Metadata
Title
Nanostructured Polymers and Polymer/Inorganic Nanocomposites for Thermoelectric Applications
Authors
Zongqiong Lin
Qichun Zhang
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_14

Premium Partners