Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2017 | OriginalPaper | Chapter

7. Nanostrukturierung

Authors : Wolfgang R. Fahrner, Ulrich Hilleringmann, Hella-Christin Scheer, Andreas Dirk Wieck

Published in: Nanotechnologie und Nanoprozesse

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Die Übersicht zu den technologischen Verfahren der Nanotechnolgie beinhaltet die Nanopolitur, die Trockenätztechniken und Lithographieverfahren, fokussierte Ionenstrahltechniken, Nano-Imprint- und Rastermikroskopie. Anhand von Beispielen werden die jeweiligen Techniken erläutert und ihre Einsatzgebiete vorgestellt.
Literature
1.
go back to reference Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108 CrossRef Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108 CrossRef
2.
go back to reference Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-polishing and subsequent optical characterization of CVD polycrystalline diamond films. In: Proceedings of 25th annual conference of IEEE Industrial Electronics Society. IECON, San Jose, S 50 Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-polishing and subsequent optical characterization of CVD polycrystalline diamond films. In: Proceedings of 25th annual conference of IEEE Industrial Electronics Society. IECON, San Jose, S 50
3.
go back to reference Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc 5:112 Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc 5:112
4.
go back to reference Weima JA, Fahrner WR, Job R (2001) A model of the thermochemical polishing of cvd diamond films on transition metals with emphasis on steel. J Electrochem Soc (submitted) Weima JA, Fahrner WR, Job R (2001) A model of the thermochemical polishing of cvd diamond films on transition metals with emphasis on steel. J Electrochem Soc (submitted)
5.
go back to reference Weima JA, Job R, Fahrner WR (2002) Thermochemical beveling of CVD diamond films intended for precision cutting and measurement applications. Diamond Relat Mater 11:1537 CrossRef Weima JA, Job R, Fahrner WR (2002) Thermochemical beveling of CVD diamond films intended for precision cutting and measurement applications. Diamond Relat Mater 11:1537 CrossRef
6.
go back to reference Hilleringmann U (2014) Silizium-Halbleitertechnologie. Springer-Vieweg, S 65 Hilleringmann U (2014) Silizium-Halbleitertechnologie. Springer-Vieweg, S 65
7.
go back to reference Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M, Iwai H (1996) 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans Electron Devices ED43:1233 Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M, Iwai H (1996) 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans Electron Devices ED43:1233
9.
go back to reference Cullmann E, Cooper K, Reyerse C (1991) Optimized contact/proximity lithography. Suss Report 5(3):1–4 Cullmann E, Cooper K, Reyerse C (1991) Optimized contact/proximity lithography. Suss Report 5(3):1–4
10.
go back to reference Goodberlet JG, Dunn BL (2000) Deep-ultraviolet contact photolithography. Microelectron Eng 53:95–99 CrossRef Goodberlet JG, Dunn BL (2000) Deep-ultraviolet contact photolithography. Microelectron Eng 53:95–99 CrossRef
11.
12.
go back to reference Zell T (2000) Lithographie. Dresdner Sommerschule Mikroelektronik Zell T (2000) Lithographie. Dresdner Sommerschule Mikroelektronik
13.
go back to reference Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE 631:34 ff CrossRef Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE 631:34 ff CrossRef
14.
go back to reference Henderson CC, Wheeler DR, Pollagi TR, O’Connell DJ, Goldsmith JEM, Fisher A, Cardinale GF, Hutchinson JM, Rao V (1998) Top-surface imaging resists for EUV lithography. Emerging lithographic technologies II. Proc SPIE 3331:32 CrossRef Henderson CC, Wheeler DR, Pollagi TR, O’Connell DJ, Goldsmith JEM, Fisher A, Cardinale GF, Hutchinson JM, Rao V (1998) Top-surface imaging resists for EUV lithography. Emerging lithographic technologies II. Proc SPIE 3331:32 CrossRef
17.
go back to reference Instituts für Lasertechnik (2000) Jahresbericht des Fraunhofer Instituts für Lasertechnik (2000) Jahresbericht des Fraunhofer
19.
go back to reference Harriott LR (1999) Scalpel: projection electron beam lithography. In: Proceedings of the 1999 IEEE particle accelerator conference, New York Harriott LR (1999) Scalpel: projection electron beam lithography. In: Proceedings of the 1999 IEEE particle accelerator conference, New York
21.
go back to reference Pfeiffer H et al (2000) PREVAIL-IBM’s E-beam technology for next-generation lithography. Proc SPIE Pfeiffer H et al (2000) PREVAIL-IBM’s E-beam technology for next-generation lithography. Proc SPIE
22.
go back to reference Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 111 ff Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 111 ff
23.
go back to reference Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 101 Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 101
24.
go back to reference Melngailis J (1993) Focused ion beam lithography. Nucl Instrum Methods 80/81:1271 CrossRef Melngailis J (1993) Focused ion beam lithography. Nucl Instrum Methods 80/81:1271 CrossRef
25.
go back to reference Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys A Mater Sci Process 61:99 CrossRef Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys A Mater Sci Process 61:99 CrossRef
26.
go back to reference Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, Taunton Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, Taunton
27.
go back to reference Bischoff L, Pilz W, Mazarov P, Wieck AD (2010) Comparison of bismuth emitting liquid metal ion sources. Appl Phys A Mater Sci Process 99:145–150 CrossRef Bischoff L, Pilz W, Mazarov P, Wieck AD (2010) Comparison of bismuth emitting liquid metal ion sources. Appl Phys A Mater Sci Process 99:145–150 CrossRef
28.
go back to reference Mazarov P, Melnikov A, Wernhardt R, Wieck AD (2008) Long-life bismuth liquid metal ion source for focussed ion beam micromachining application. Appl Surf Sci 254:7401–7404 CrossRef Mazarov P, Melnikov A, Wernhardt R, Wieck AD (2008) Long-life bismuth liquid metal ion source for focussed ion beam micromachining application. Appl Surf Sci 254:7401–7404 CrossRef
29.
go back to reference Mazarov P, Wieck AD, Bischoff L, Pilz W (2009) Alloy liquid metal ion source for carbon focused ion beams. J Vac Sci Technol B 27:L47 CrossRef Mazarov P, Wieck AD, Bischoff L, Pilz W (2009) Alloy liquid metal ion source for carbon focused ion beams. J Vac Sci Technol B 27:L47 CrossRef
30.
go back to reference Pezzagna S, Wildanger D, Mazarov P, Wieck AD, Sarov Y, Rangelow I, Naydenov B, Jelezko F, Hell SW, Meijer J (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121 CrossRef Pezzagna S, Wildanger D, Mazarov P, Wieck AD, Sarov Y, Rangelow I, Naydenov B, Jelezko F, Hell SW, Meijer J (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121 CrossRef
31.
go back to reference Wieck AD, Sakai D, Kawasaki T (2011) International Patent Number WO. 122687 A1 Wieck AD, Sakai D, Kawasaki T (2011) International Patent Number WO. 122687 A1
32.
go back to reference Chou YS, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in olymers. Appl Phys Lett 67:3114 CrossRef Chou YS, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in olymers. Appl Phys Lett 67:3114 CrossRef
33.
34.
go back to reference Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol B15:2897 CrossRef Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol B15:2897 CrossRef
35.
go back to reference Ye M, Li J-X, Li J, Li W, Lu B-R, Huang G, Mei Y, Chen Y, Liu R (2012) Humido-responsive nanostructures prepared by nanoimprinting. Microelectron Eng 98:634 CrossRef Ye M, Li J-X, Li J, Li W, Lu B-R, Huang G, Mei Y, Chen Y, Liu R (2012) Humido-responsive nanostructures prepared by nanoimprinting. Microelectron Eng 98:634 CrossRef
36.
go back to reference Moro M, Taniguchi J, Hiwasa S (2014) Fabrication of antireflection structure film by roll-to-roll ultraviolet nanoimprint lithography. J Vac Sci Technol B32:06FG09 CrossRef Moro M, Taniguchi J, Hiwasa S (2014) Fabrication of antireflection structure film by roll-to-roll ultraviolet nanoimprint lithography. J Vac Sci Technol B32:06FG09 CrossRef
37.
go back to reference Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold CB, Chou SY (2014) Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J Vac Sci Technol B32:06FG10 CrossRef Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold CB, Chou SY (2014) Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J Vac Sci Technol B32:06FG10 CrossRef
38.
go back to reference Scheer H-C, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology – imprint techniques. In: Pavesi L, Buzaneva E (Hrsg) Frontiers of nano-optoelectronic systems. Kluwer, Dordrecht, S 319 CrossRef Scheer H-C, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology – imprint techniques. In: Pavesi L, Buzaneva E (Hrsg) Frontiers of nano-optoelectronic systems. Kluwer, Dordrecht, S 319 CrossRef
39.
go back to reference Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (2001) Nanoimprint techniques. In: Nalwa HS (Hrsg) Handbook of thin film materials, Bd 5. Academic, S 1 Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (2001) Nanoimprint techniques. In: Nalwa HS (Hrsg) Handbook of thin film materials, Bd 5. Academic, S 1
40.
go back to reference Schift H, Heyderman LJ (2003) Kap 3: Nanorheology; squeeze flow in hot embossing of thin films. In: Sotomayor Torres C-M (Hrsg) Nanostructure science and technology, Volume on alternative lithography. Kluwer, New York Schift H, Heyderman LJ (2003) Kap 3: Nanorheology; squeeze flow in hot embossing of thin films. In: Sotomayor Torres C-M (Hrsg) Nanostructure science and technology, Volume on alternative lithography. Kluwer, New York
41.
go back to reference Schift H (2007) Nanoimprint lithography. In: Bushan B (Hrsg) Springer handbook of nanotechnology. Springer, Berlin, S 239 CrossRef Schift H (2007) Nanoimprint lithography. In: Bushan B (Hrsg) Springer handbook of nanotechnology. Springer, Berlin, S 239 CrossRef
42.
go back to reference Guo LJ (2004) Topical review: recent progress in nanoimprint and its applications. J Phys D Appl Phys 37:R123 CrossRef Guo LJ (2004) Topical review: recent progress in nanoimprint and its applications. J Phys D Appl Phys 37:R123 CrossRef
43.
go back to reference Cross GLW (2006) Topical review: the production of nanostructures by mechanical forming. J Phys D Appl Phys 39:R262 CrossRef Cross GLW (2006) Topical review: the production of nanostructures by mechanical forming. J Phys D Appl Phys 39:R262 CrossRef
44.
go back to reference Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B26:458 CrossRef Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B26:458 CrossRef
45.
go back to reference Schulz H, Wissen M, Bogdanski N, Scheer H-C Mattes K, Friedrich C (2005) Choice of the molecular weight of an imprint polymer for hot embossing lithography. Microelectron Eng 78–79:625 CrossRef Schulz H, Wissen M, Bogdanski N, Scheer H-C Mattes K, Friedrich C (2005) Choice of the molecular weight of an imprint polymer for hot embossing lithography. Microelectron Eng 78–79:625 CrossRef
46.
go back to reference Atasoy H, Vogler M, Haatainen T, Schleunitz A, Jarzabek D, Schift H, Reuther F, Gruetzner G, Rymuza Z (2011) Novel thermoplastic polymers with improved release properties for thermal NIL. Microelectron Eng 88:1902 CrossRef Atasoy H, Vogler M, Haatainen T, Schleunitz A, Jarzabek D, Schift H, Reuther F, Gruetzner G, Rymuza Z (2011) Novel thermoplastic polymers with improved release properties for thermal NIL. Microelectron Eng 88:1902 CrossRef
47.
go back to reference Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT – Epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722 CrossRef Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT – Epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722 CrossRef
48.
go back to reference Wang S, Dhima K, Steinberg C, Papenheim M, Scheer H-C, Helfer A, Görrn P (2015) Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl Phys A Mater Sci Process 121:357 CrossRef Wang S, Dhima K, Steinberg C, Papenheim M, Scheer H-C, Helfer A, Görrn P (2015) Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl Phys A Mater Sci Process 121:357 CrossRef
49.
go back to reference Dhima K (2014) Hybrid lithography. The combination of T-NIL and UV-L. Dissertation Universität Wuppertal, Der AndereVerlag, Uelvesbüll Dhima K (2014) Hybrid lithography. The combination of T-NIL and UV-L. Dissertation Universität Wuppertal, Der AndereVerlag, Uelvesbüll
50.
go back to reference Dhima K, Steinberg C, Mayer A, Wang S, Papenheim M, Scheer H-C (2014) Residual layer lithography. Microelectron Eng 123:84 CrossRef Dhima K, Steinberg C, Mayer A, Wang S, Papenheim M, Scheer H-C (2014) Residual layer lithography. Microelectron Eng 123:84 CrossRef
51.
go back to reference Horstmann JT, Hilleringmann U, Goser KF (1998) Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans ED-45:299 CrossRef Horstmann JT, Hilleringmann U, Goser KF (1998) Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans ED-45:299 CrossRef
52.
go back to reference Noma H, Kawata H, Yasuda M, Hirai Y, Sakamoto J (2013) Selective edge lithography for fabricating imprint molds with mixed scale patterns. J Vac Sci Technol B31:06FB03 CrossRef Noma H, Kawata H, Yasuda M, Hirai Y, Sakamoto J (2013) Selective edge lithography for fabricating imprint molds with mixed scale patterns. J Vac Sci Technol B31:06FB03 CrossRef
53.
go back to reference Schift H, Spreu C, Saidani M, Bednarzik M, Gobrecht J (2009) Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography. J Vac Sci Technol B27:2846 CrossRef Schift H, Spreu C, Saidani M, Bednarzik M, Gobrecht J (2009) Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography. J Vac Sci Technol B27:2846 CrossRef
54.
go back to reference Papenheim M, Steinberg S, Dhima K, Wang S, Scheer H-C (2015) Flexible composite stamp for thermal nanoimprint lithography based on OrmoStamp. J Vac Sci Technol B33:06F601 CrossRef Papenheim M, Steinberg S, Dhima K, Wang S, Scheer H-C (2015) Flexible composite stamp for thermal nanoimprint lithography based on OrmoStamp. J Vac Sci Technol B33:06F601 CrossRef
55.
go back to reference Gourgon C, Perret C, Micouin G, Lazzarino F, Tortai JH, Joubert O, Grolier J-PE (2003) Influence of pattern density in nanoimprint lithography. J Vac Sci Technol B21:98 CrossRef Gourgon C, Perret C, Micouin G, Lazzarino F, Tortai JH, Joubert O, Grolier J-PE (2003) Influence of pattern density in nanoimprint lithography. J Vac Sci Technol B21:98 CrossRef
56.
go back to reference Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B16:3917 CrossRef Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B16:3917 CrossRef
57.
go back to reference Tormen M, Sovernigo E, Pozzato A, Pianigiani M, Tormen M (2015) Sub-100 μs nanoimprint lithography at wafer scale. Microelectron Eng 141:21 CrossRef Tormen M, Sovernigo E, Pozzato A, Pianigiani M, Tormen M (2015) Sub-100 μs nanoimprint lithography at wafer scale. Microelectron Eng 141:21 CrossRef
58.
go back to reference Nagato N, Hattori S, Hamaguchi T, Nakao M (2010) Rapid thermal imprinting of high-aspect-ratio nanostructures with dynamic heating of mold surface. J Vac Sci Technol B28:C6M122 CrossRef Nagato N, Hattori S, Hamaguchi T, Nakao M (2010) Rapid thermal imprinting of high-aspect-ratio nanostructures with dynamic heating of mold surface. J Vac Sci Technol B28:C6M122 CrossRef
59.
go back to reference Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B32:06FG03 CrossRef Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B32:06FG03 CrossRef
60.
go back to reference Seo SM, Kim TI, Lee HH (2006) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567 CrossRef Seo SM, Kim TI, Lee HH (2006) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567 CrossRef
61.
go back to reference Scheer H-C, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron Eng 56:311 CrossRef Scheer H-C, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron Eng 56:311 CrossRef
62.
go back to reference Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres C-M, Mehnert R, Bigl F (1999) Fabrication of 3D micro- and nanostructures by replica molding and imprinting. Proc EUSPEN 1:534 Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres C-M, Mehnert R, Bigl F (1999) Fabrication of 3D micro- and nanostructures by replica molding and imprinting. Proc EUSPEN 1:534
63.
go back to reference Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol B18:3557 CrossRef Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol B18:3557 CrossRef
64.
go back to reference Chaix N, Gourgon C, Perret C, Landis S, Leveder T (2007) Nanoimprint lithography processes on 200 mm Si wafer for optical application: residual thickness etching anisotropy. J Vac Sci Technol B25:2346 CrossRef Chaix N, Gourgon C, Perret C, Landis S, Leveder T (2007) Nanoimprint lithography processes on 200 mm Si wafer for optical application: residual thickness etching anisotropy. J Vac Sci Technol B25:2346 CrossRef
65.
go back to reference Landis S, Reboud V, Enot T, Vizios C (2013) Three dimensional on 300 mm wafer scale nanoimprint lithography process. Microelectron Eng 110:198 CrossRef Landis S, Reboud V, Enot T, Vizios C (2013) Three dimensional on 300 mm wafer scale nanoimprint lithography process. Microelectron Eng 110:198 CrossRef
66.
go back to reference Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B14:4124 CrossRef Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B14:4124 CrossRef
67.
go back to reference Farshchian B, Amirsageghi A, Hurst SM, Wu J, Lee J, Park S (2011) Soft UV-nanoimprint lithography on non-planar surfaces. Microelectron Eng 88:3787 CrossRef Farshchian B, Amirsageghi A, Hurst SM, Wu J, Lee J, Park S (2011) Soft UV-nanoimprint lithography on non-planar surfaces. Microelectron Eng 88:3787 CrossRef
68.
go back to reference Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J (2005) Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 16:171 CrossRef Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J (2005) Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 16:171 CrossRef
69.
go back to reference Steinberg C, Dhima K, Blensgens D, Mayer A, Wang S, Papenheim M, Scheer H-C, Zajadacz J, Zimmer K (2014) A scalable anti-sticking layer process via controlled evaporation. Microelectron Eng 123:4 CrossRef Steinberg C, Dhima K, Blensgens D, Mayer A, Wang S, Papenheim M, Scheer H-C, Zajadacz J, Zimmer K (2014) A scalable anti-sticking layer process via controlled evaporation. Microelectron Eng 123:4 CrossRef
70.
go back to reference Francone A, Iojoiu C, Poulain C, Lombard C, Pepin-Donat B, Boussey J, Zelsmann M (2010) Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J Vac Sci Technol B28:C6M72 CrossRef Francone A, Iojoiu C, Poulain C, Lombard C, Pepin-Donat B, Boussey J, Zelsmann M (2010) Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J Vac Sci Technol B28:C6M72 CrossRef
71.
go back to reference Yamashita D, Taniguchi J, Suzuki H (2012) Liftetime evaluation of release agent for ultraviolet nanoimprint lithography. Microelectron Eng 97:109 CrossRef Yamashita D, Taniguchi J, Suzuki H (2012) Liftetime evaluation of release agent for ultraviolet nanoimprint lithography. Microelectron Eng 97:109 CrossRef
72.
go back to reference Schmitt H, Duempelmann P, Fader R, Rommel M, Bauer AJ, Frey L, Brehm M, Kraft A (2012) Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. Microelectron Eng 98:275 CrossRef Schmitt H, Duempelmann P, Fader R, Rommel M, Bauer AJ, Frey L, Brehm M, Kraft A (2012) Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. Microelectron Eng 98:275 CrossRef
73.
go back to reference Zelsmann M, Alleaume C, Truffier-Boutry D, Francone A, Beaurain A, Pelissier B, Boussey J (2010) Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatment in UV nanoimprint lithography. Microelectron Eng 87:1029 CrossRef Zelsmann M, Alleaume C, Truffier-Boutry D, Francone A, Beaurain A, Pelissier B, Boussey J (2010) Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatment in UV nanoimprint lithography. Microelectron Eng 87:1029 CrossRef
74.
go back to reference Hiroshima H, Komuro M (2007) UV-nanoimprint with the assistance of gas condensation at atmospheric environmental pressure. J Vac Sci Technol B25:2333 CrossRef Hiroshima H, Komuro M (2007) UV-nanoimprint with the assistance of gas condensation at atmospheric environmental pressure. J Vac Sci Technol B25:2333 CrossRef
75.
go back to reference Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:279 Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:279
76.
go back to reference Glinsner T, Veres T, Kreindl G, Roy E, Morton K, Wiesner T, Thanner C, Treiblmayr D, Miller R, Lindner P (2010) Fully automated hot embossing process utilizing high resolution working stamps. Microelectron Eng 87:1037 CrossRef Glinsner T, Veres T, Kreindl G, Roy E, Morton K, Wiesner T, Thanner C, Treiblmayr D, Miller R, Lindner P (2010) Fully automated hot embossing process utilizing high resolution working stamps. Microelectron Eng 87:1037 CrossRef
77.
go back to reference Verschuuren MA (2010) Substrate conformal imprint lithography for nanophotonics. Promotion Universität Utrecht Verschuuren MA (2010) Substrate conformal imprint lithography for nanophotonics. Promotion Universität Utrecht
78.
go back to reference Fader R, Rommel M, Bauer A, Rumler M, Frey L, van de Laar R, Ji R, Schömbs U (2013) Accuracy of wafer level alignment with substrate conformal imprint lithography. J Vac Sci Technol B31:06FB02 CrossRef Fader R, Rommel M, Bauer A, Rumler M, Frey L, van de Laar R, Ji R, Schömbs U (2013) Accuracy of wafer level alignment with substrate conformal imprint lithography. J Vac Sci Technol B31:06FB02 CrossRef
79.
go back to reference Kim HJ, Almanza-Workman M, Garcia RA, Kwon O, Jeffrey F, Braymen S, Hauschildt J, Junge K, Larson D, Stieler D, Chaiken A, Cobene B, Elder RE, Jackson WB, Mehrban J, Jeans A, Luo H, Mai P, Perlov C, Taussig C (2009) Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display 17:963 CrossRef Kim HJ, Almanza-Workman M, Garcia RA, Kwon O, Jeffrey F, Braymen S, Hauschildt J, Junge K, Larson D, Stieler D, Chaiken A, Cobene B, Elder RE, Jackson WB, Mehrban J, Jeans A, Luo H, Mai P, Perlov C, Taussig C (2009) Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display 17:963 CrossRef
80.
go back to reference Ji R, Hornung M, Verschuuren MA, van de Laar R, van Eekelen J, Plachetka U, Moeller M, Moormann C (2010) UV-enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron Eng 87(S):963 CrossRef Ji R, Hornung M, Verschuuren MA, van de Laar R, van Eekelen J, Plachetka U, Moeller M, Moormann C (2010) UV-enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron Eng 87(S):963 CrossRef
81.
go back to reference Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386 CrossRef Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386 CrossRef
82.
go back to reference Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699 CrossRef Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699 CrossRef
83.
go back to reference Steinberg C, Gubert M, Papenheim M, Wang S, Scheer H-C, Zajadacz J, Zimmer K (2015) Challenges with soft stamps for guiding of diblock copolymers. Appl Phys A Mater Sci Process 121:489 CrossRef Steinberg C, Gubert M, Papenheim M, Wang S, Scheer H-C, Zajadacz J, Zimmer K (2015) Challenges with soft stamps for guiding of diblock copolymers. Appl Phys A Mater Sci Process 121:489 CrossRef
84.
go back to reference Suh KY, Lee HH (2002) Self-organized polymeric microstructures. Adv Mater 14:346 CrossRef Suh KY, Lee HH (2002) Self-organized polymeric microstructures. Adv Mater 14:346 CrossRef
85.
go back to reference Persano L, Molle S, Girardo S, Neves AAR, Camposeo A, Stabile R, Cingolani R, Pisigniano D (2008) Soft nanopatterning on light-emitting inorganic-organic composites. Adv Funct Mater 18:2692 CrossRef Persano L, Molle S, Girardo S, Neves AAR, Camposeo A, Stabile R, Cingolani R, Pisigniano D (2008) Soft nanopatterning on light-emitting inorganic-organic composites. Adv Funct Mater 18:2692 CrossRef
86.
go back to reference Suh D, Lee HH (2004) Sub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography. J Vac Sci Technol B22(S):1123 CrossRef Suh D, Lee HH (2004) Sub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography. J Vac Sci Technol B22(S):1123 CrossRef
87.
go back to reference Ye X, Ding Y, Duan Y, Liu H, Lu B (2010) Room-temperature capillary-imprint lithography for making micro−/nanostructures in large areas. J Vac Sci Technol B28:138 CrossRef Ye X, Ding Y, Duan Y, Liu H, Lu B (2010) Room-temperature capillary-imprint lithography for making micro−/nanostructures in large areas. J Vac Sci Technol B28:138 CrossRef
88.
go back to reference Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498 CrossRef Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498 CrossRef
89.
go back to reference Xia Y, Zhao X-M, Whitesides GM (1996) Pattern transfer: self assembled monolayers as ultrathin resists. Microelectron Eng 32:255 CrossRef Xia Y, Zhao X-M, Whitesides GM (1996) Pattern transfer: self assembled monolayers as ultrathin resists. Microelectron Eng 32:255 CrossRef
90.
go back to reference Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of Silicon dioxide and its application in microfabrication. J Am Chem Soc 117:9576 CrossRef Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of Silicon dioxide and its application in microfabrication. J Am Chem Soc 117:9576 CrossRef
91.
go back to reference Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer sized features. Adv Mater 8:1015 CrossRef Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer sized features. Adv Mater 8:1015 CrossRef
92.
go back to reference Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042 CrossRef Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042 CrossRef
93.
go back to reference Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229 CrossRef Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229 CrossRef
94.
go back to reference Scheer H-C, Papenheim M, Dhima K, Wang S, Steinberg C (2014) Aspects of cavity filling with nanimprint. Microsyst Technol 21:1595 CrossRef Scheer H-C, Papenheim M, Dhima K, Wang S, Steinberg C (2014) Aspects of cavity filling with nanimprint. Microsyst Technol 21:1595 CrossRef
95.
go back to reference Scheer H-C, Mayer A, Dhima K, Wang S, Steinberg C (2013) Challenges with high aspect ratio nanoimprint. Microsyst Technol 20:1891 CrossRef Scheer H-C, Mayer A, Dhima K, Wang S, Steinberg C (2013) Challenges with high aspect ratio nanoimprint. Microsyst Technol 20:1891 CrossRef
96.
go back to reference Yasuda M, Araki K, Taga A, Horiba A, Kawata H, Hirai Y (2011) Computational study of polymer filling process in nanoimprint lithography. Microelectron Eng 88:2188 CrossRef Yasuda M, Araki K, Taga A, Horiba A, Kawata H, Hirai Y (2011) Computational study of polymer filling process in nanoimprint lithography. Microelectron Eng 88:2188 CrossRef
97.
go back to reference Hua F, Gaur A, Sun Y, Word M, Jin N, Adesida I, Shim M, Shim A, Rogers JA (2006) Processing dependent behavior of soft imprint lithography on the 1-10 nm scale. IEEE Trans Nanotechnol 5:301 CrossRef Hua F, Gaur A, Sun Y, Word M, Jin N, Adesida I, Shim M, Shim A, Rogers JA (2006) Processing dependent behavior of soft imprint lithography on the 1-10 nm scale. IEEE Trans Nanotechnol 5:301 CrossRef
98.
go back to reference Mayer A, Dhima K, Wang S, Steinberg C, Papenheim M, Scheer H-C (2015) The underestimated impact of instabilities in nanoimprint. Appl Phys A Mater Sci Process 121:405 CrossRef Mayer A, Dhima K, Wang S, Steinberg C, Papenheim M, Scheer H-C (2015) The underestimated impact of instabilities in nanoimprint. Appl Phys A Mater Sci Process 121:405 CrossRef
99.
go back to reference Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe E-L, Ling TGI (2000) Nanoimprint and UV-lithography: mix&match process for fabrication of interdigitatednanobiosensors. Microelectron Eng 53:521 CrossRef Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe E-L, Ling TGI (2000) Nanoimprint and UV-lithography: mix&match process for fabrication of interdigitatednanobiosensors. Microelectron Eng 53:521 CrossRef
100.
go back to reference Dhima K, Steinberg C, Wang S, Papenheim M, Scheer H-C (2015) Nanoimprint combination techiques. Microelectron Eng 141:92 CrossRef Dhima K, Steinberg C, Wang S, Papenheim M, Scheer H-C (2015) Nanoimprint combination techiques. Microelectron Eng 141:92 CrossRef
101.
go back to reference Schmid GM, Miller M, Brooks C, Khusnatdinov N, LaBrake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang X (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B27:573 CrossRef Schmid GM, Miller M, Brooks C, Khusnatdinov N, LaBrake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang X (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B27:573 CrossRef
102.
go back to reference Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524 CrossRef Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524 CrossRef
103.
go back to reference Tan W, Kopelman R (2000) Nanoscopic optical sensors and probes. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York, S 621 CrossRef Tan W, Kopelman R (2000) Nanoscopic optical sensors and probes. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York, S 621 CrossRef
104.
go back to reference Betzig E, Trautmann JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189 CrossRef Betzig E, Trautmann JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189 CrossRef
105.
go back to reference Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40 CrossRef Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40 CrossRef
Metadata
Title
Nanostrukturierung
Authors
Wolfgang R. Fahrner
Ulrich Hilleringmann
Hella-Christin Scheer
Andreas Dirk Wieck
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48908-6_7