Skip to main content
Top

2013 | OriginalPaper | Chapter

6. Nanotoxicology in Green Nanoscience

Authors : Leah Wehmas, Robert L. Tanguay

Published in: Innovations in Green Chemistry and Green Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotechnology holds great promise for future economical and technological advances, yet health and safety concerns regarding nanomaterials persist. As an emerging technology, nanotechnology is in the unique position to proactively address health and safety concerns throughout the product life cycle. Green chemistry aims to create benign compounds in a way that prevents pollution and reduces waste throughout every stage of production. Through green nanoscience, the principles of green chemistry can be applied toward making high performance, yet inherently safe nanomaterials. Successful application of green chemistry principles to assess nanomaterial health and safety requires efficient, predictive, high-throughput nanotoxicity testing. With these approaches, designers and manufacturers of nanomaterials can assess nanotoxicity early in production to redesign or replace hazardous nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hushon J, Clerman R, Wagner B (1979) Tiered testing for chemical hazard assessment. Environ Sci Technol 13:1202–1207CrossRef Hushon J, Clerman R, Wagner B (1979) Tiered testing for chemical hazard assessment. Environ Sci Technol 13:1202–1207CrossRef
4.
go back to reference Forrest DR (2001) Molecular nanotechnology. IEEE Instrum Meas Mag 4(3):11–20CrossRef Forrest DR (2001) Molecular nanotechnology. IEEE Instrum Meas Mag 4(3):11–20CrossRef
5.
go back to reference Lecoanet H, Wiesner MR (2004) Assessment of the mobility of nanomaterials in groundwater acouifers. Abs Pap Am Chem Soc 227:U1275–U1275 Lecoanet H, Wiesner MR (2004) Assessment of the mobility of nanomaterials in groundwater acouifers. Abs Pap Am Chem Soc 227:U1275–U1275
6.
go back to reference Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169CrossRef Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169CrossRef
7.
go back to reference Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382CrossRef Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382CrossRef
8.
go back to reference Okamoto Y (2001) Ab initio investigation of hydrogenation of C-60. J Phys Chem A 105:7634–7637CrossRef Okamoto Y (2001) Ab initio investigation of hydrogenation of C-60. J Phys Chem A 105:7634–7637CrossRef
9.
go back to reference Sun O, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C-60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583CrossRef Sun O, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C-60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583CrossRef
10.
go back to reference Lux Research (2009) The recession’s ripple effect on nanotech. Lux Research Inc., New York Lux Research (2009) The recession’s ripple effect on nanotech. Lux Research Inc., New York
11.
go back to reference Dahl J, Maddux BLS, Hutchison JE (2007) Green nanosynthesis. Chem Rev 107:2228–2269CrossRef Dahl J, Maddux BLS, Hutchison JE (2007) Green nanosynthesis. Chem Rev 107:2228–2269CrossRef
12.
go back to reference Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402CrossRef Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402CrossRef
13.
go back to reference Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321CrossRef Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321CrossRef
14.
go back to reference NRC (2000) Scientific Frontiers in developmental toxicology and risk assessment. National Academy Press, Washington, DC, pp 1–327 NRC (2000) Scientific Frontiers in developmental toxicology and risk assessment. National Academy Press, Washington, DC, pp 1–327
15.
go back to reference Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford/New York, xi, 135 p Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford/New York, xi, 135 p
16.
go back to reference McKenzie LC, Hutchinson J (2004) Green nanoscience: an integrated approach to greener products, processes and applications. Chem Today 22:30–33 McKenzie LC, Hutchinson J (2004) Green nanoscience: an integrated approach to greener products, processes and applications. Chem Today 22:30–33
17.
go back to reference Abbott BD, Perdew GH, Buckalew AR, Birnbaum LS (1994) Interactive regulation of Ah and glucocorticoid receptors in the synergistic induction of cleft palate by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicol Appl Pharmacol 128:138–150CrossRef Abbott BD, Perdew GH, Buckalew AR, Birnbaum LS (1994) Interactive regulation of Ah and glucocorticoid receptors in the synergistic induction of cleft palate by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicol Appl Pharmacol 128:138–150CrossRef
18.
go back to reference Podgórski A, Balazy A, Gradon L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61:6804–6815CrossRef Podgórski A, Balazy A, Gradon L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61:6804–6815CrossRef
19.
go back to reference Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342CrossRef Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342CrossRef
20.
go back to reference Yuan J, Liu X, Akbulut O, Hu J, Suib SL et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nano 3:332–336CrossRef Yuan J, Liu X, Akbulut O, Hu J, Suib SL et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nano 3:332–336CrossRef
21.
go back to reference Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312CrossRef Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312CrossRef
22.
go back to reference Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19:735–744CrossRef Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19:735–744CrossRef
23.
go back to reference Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRef Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRef
24.
go back to reference Detrich HW, Westerfield M, Zon LI (eds) (1999) The zebrafish biology. Academic, San Diego, 391 p Detrich HW, Westerfield M, Zon LI (eds) (1999) The zebrafish biology. Academic, San Diego, 391 p
25.
go back to reference Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279CrossRef Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279CrossRef
26.
go back to reference van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457CrossRef van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457CrossRef
27.
go back to reference Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379CrossRef Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379CrossRef
28.
go back to reference Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA et al (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330 Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA et al (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330
29.
go back to reference de Jong JL, Zon LI (2005) Use of the zebrafish to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501CrossRef de Jong JL, Zon LI (2005) Use of the zebrafish to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501CrossRef
30.
go back to reference Gerhard GS (2003) Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol 38:1333–1341CrossRef Gerhard GS (2003) Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol 38:1333–1341CrossRef
31.
go back to reference Keller ET, Murtha JM (2004) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comp Biochem Physiol C Toxicol Pharmacol 138:335–341CrossRef Keller ET, Murtha JM (2004) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comp Biochem Physiol C Toxicol Pharmacol 138:335–341CrossRef
32.
go back to reference Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31:62–87 Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31:62–87
33.
go back to reference Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1:229–231CrossRef Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1:229–231CrossRef
34.
go back to reference Moore JL, Gestl EE, Cheng KC (2004) Mosaic eyes, genomic instability mutants, and cancer susceptibility. Methods Cell Biol 76:555–568CrossRef Moore JL, Gestl EE, Cheng KC (2004) Mosaic eyes, genomic instability mutants, and cancer susceptibility. Methods Cell Biol 76:555–568CrossRef
35.
go back to reference Chen JN, Fishman MC (2000) Genetic dissection of heart development. Ernst Schering Res Found Workshop 29:107–122 Chen JN, Fishman MC (2000) Genetic dissection of heart development. Ernst Schering Res Found Workshop 29:107–122
36.
go back to reference Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA et al (2005) Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132:4193–4204CrossRef Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA et al (2005) Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132:4193–4204CrossRef
37.
go back to reference Drummond IA (2004) Zebrafish kidney development. Methods Cell Biol 76:501–530CrossRef Drummond IA (2004) Zebrafish kidney development. Methods Cell Biol 76:501–530CrossRef
38.
go back to reference Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I et al (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929CrossRef Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I et al (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929CrossRef
39.
go back to reference Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304CrossRef Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304CrossRef
40.
go back to reference Bahadori R, Huber M, Rinner O, Seeliger MW, Geiger-Rudolph S et al (2003) Retinal function and morphology in two zebrafish models of oculo-renal syndromes. Eur J Neurosci 18:1377–1386CrossRef Bahadori R, Huber M, Rinner O, Seeliger MW, Geiger-Rudolph S et al (2003) Retinal function and morphology in two zebrafish models of oculo-renal syndromes. Eur J Neurosci 18:1377–1386CrossRef
41.
go back to reference McMahon C, Semina EV, Link BA (2004) Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 138:343–350CrossRef McMahon C, Semina EV, Link BA (2004) Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 138:343–350CrossRef
42.
go back to reference Whitfield TT (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53:157–171CrossRef Whitfield TT (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53:157–171CrossRef
43.
go back to reference Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22CrossRef Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22CrossRef
44.
go back to reference Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98:11691–11696CrossRef Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98:11691–11696CrossRef
45.
go back to reference Svoboda KR, Vijayaraghavan S, Tanguay RL (2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J Neurosci 22:10731–10741 Svoboda KR, Vijayaraghavan S, Tanguay RL (2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J Neurosci 22:10731–10741
46.
go back to reference Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782CrossRef Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782CrossRef
47.
go back to reference Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226:202–210CrossRef Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226:202–210CrossRef
48.
go back to reference Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201CrossRef Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201CrossRef
49.
go back to reference Andreasen EA, Mathew LK, Tanguay RL (2006) Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation. Toxicol Sci 92:254–269CrossRef Andreasen EA, Mathew LK, Tanguay RL (2006) Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation. Toxicol Sci 92:254–269CrossRef
50.
go back to reference Vogel G (2000) Genomics. Sanger will sequence zebrafish genome. Science 290:1671CrossRef Vogel G (2000) Genomics. Sanger will sequence zebrafish genome. Science 290:1671CrossRef
51.
go back to reference Zon LI (1999) Zebrafish: a new model for human disease. Genome Res 9:99–100 Zon LI (1999) Zebrafish: a new model for human disease. Genome Res 9:99–100
52.
go back to reference Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8:d1227–d1253CrossRef Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8:d1227–d1253CrossRef
53.
go back to reference Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6:218–223 Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6:218–223
54.
go back to reference Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231CrossRef Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231CrossRef
55.
go back to reference Dodd A, Curtis PM, Williams LC, Love DR (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9:2443–2449CrossRef Dodd A, Curtis PM, Williams LC, Love DR (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9:2443–2449CrossRef
56.
go back to reference Hahn M (2002) Aryl hydrocarbon receptors: diversity and evolution(1). Chem Biol Interact 141:131CrossRef Hahn M (2002) Aryl hydrocarbon receptors: diversity and evolution(1). Chem Biol Interact 141:131CrossRef
57.
go back to reference Tanguay RL, Andreasen EA, Walker MK, Peterson RE (2003) Dioxin toxicity and aryl hydrocarbon receptor signaling in fish. In: Schecter A (ed) Dioxins and health. Plenum Press, New York, pp 603–628 Tanguay RL, Andreasen EA, Walker MK, Peterson RE (2003) Dioxin toxicity and aryl hydrocarbon receptor signaling in fish. In: Schecter A (ed) Dioxins and health. Plenum Press, New York, pp 603–628
58.
go back to reference Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE et al (2006) AHR activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:549–561CrossRef Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE et al (2006) AHR activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:549–561CrossRef
59.
go back to reference Muller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21CrossRef Muller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21CrossRef
60.
go back to reference Ryffel B (1997) Impact of knockout mice in toxicology. Crit Rev Toxicol 27:135–154CrossRef Ryffel B (1997) Impact of knockout mice in toxicology. Crit Rev Toxicol 27:135–154CrossRef
61.
go back to reference Rudolph U, Mohler H (1999) Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 375:327–337CrossRef Rudolph U, Mohler H (1999) Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 375:327–337CrossRef
62.
go back to reference Gonzalez FJ (2002) Transgenic models in xenobiotic metabolism and toxicology. Toxicology 181–182:237–239CrossRef Gonzalez FJ (2002) Transgenic models in xenobiotic metabolism and toxicology. Toxicology 181–182:237–239CrossRef
63.
go back to reference Fan L, Collodi P (2002) Progress towards cell-mediated gene transfer in zebrafish. Brief Funct Genomic Proteomic 1:131–138CrossRef Fan L, Collodi P (2002) Progress towards cell-mediated gene transfer in zebrafish. Brief Funct Genomic Proteomic 1:131–138CrossRef
64.
go back to reference Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195CrossRef Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195CrossRef
65.
go back to reference Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220CrossRef Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220CrossRef
66.
go back to reference Nasevicius A, Ekker SC (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr Opin Mol Ther 3:224–228 Nasevicius A, Ekker SC (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr Opin Mol Ther 3:224–228
67.
go back to reference Nasevicius A, Larson J, Ekker SC (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17:294–301CrossRef Nasevicius A, Larson J, Ekker SC (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17:294–301CrossRef
68.
go back to reference Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156CrossRef Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156CrossRef
69.
go back to reference Yan YL, Miller CT, Nissen RM, Singer A, Liu D et al (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129:5065–5079 Yan YL, Miller CT, Nissen RM, Singer A, Liu D et al (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129:5065–5079
70.
go back to reference Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y et al (2003) Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130:5755–5768CrossRef Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y et al (2003) Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130:5755–5768CrossRef
71.
go back to reference Imamura S, Kishi S (2005) Molecular cloning and functional characterization of zebrafish ATM. Int J Biochem Cell Biol 37:1105–1116CrossRef Imamura S, Kishi S (2005) Molecular cloning and functional characterization of zebrafish ATM. Int J Biochem Cell Biol 37:1105–1116CrossRef
72.
go back to reference Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36 Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36
73.
go back to reference Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46 Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46
74.
go back to reference Abdelilah S, Solnica-Krezel L, Stainier DY, Driever W (1994) Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370:468–471CrossRef Abdelilah S, Solnica-Krezel L, Stainier DY, Driever W (1994) Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370:468–471CrossRef
75.
go back to reference Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292 Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292
76.
go back to reference Talbot WS, Schier AF (1999) Positional cloning of mutated zebrafish genes. Methods Cell Biol 60:259–286CrossRef Talbot WS, Schier AF (1999) Positional cloning of mutated zebrafish genes. Methods Cell Biol 60:259–286CrossRef
77.
go back to reference Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC et al (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20:244–250CrossRef Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC et al (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20:244–250CrossRef
78.
go back to reference Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636CrossRef Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636CrossRef
79.
go back to reference Amsterdam A, Burgess S, Golling G, Chen W, Sun Z et al (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724CrossRef Amsterdam A, Burgess S, Golling G, Chen W, Sun Z et al (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724CrossRef
80.
go back to reference Chen W, Burgess S, Golling G, Amsterdam A, Hopkins N (2002) High-throughput selection of retrovirus producer cell lines leads to markedly improved efficiency of germ line-transmissible insertions in zebra fish. J Virol 76:2192–2198CrossRef Chen W, Burgess S, Golling G, Amsterdam A, Hopkins N (2002) High-throughput selection of retrovirus producer cell lines leads to markedly improved efficiency of germ line-transmissible insertions in zebra fish. J Virol 76:2192–2198CrossRef
81.
go back to reference Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E et al (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135–140CrossRef Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E et al (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135–140CrossRef
82.
go back to reference Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701CrossRef Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701CrossRef
83.
go back to reference Meng A, Tang H, Yuan B, Ong BA, Long Q et al (1999) Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93:500–508 Meng A, Tang H, Yuan B, Ong BA, Long Q et al (1999) Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93:500–508
84.
go back to reference Torgersen J, Collas P, Alestrom P (2000) Gene-gun-mediated transfer of reporter genes to somatic zebrafish (Danio rerio) tissues. Mar Biotechnol (NY) 2:293–300 Torgersen J, Collas P, Alestrom P (2000) Gene-gun-mediated transfer of reporter genes to somatic zebrafish (Danio rerio) tissues. Mar Biotechnol (NY) 2:293–300
85.
go back to reference Powers DA, Hereford L, Cole T, Chen TT, Lin CM et al (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1:301–308 Powers DA, Hereford L, Cole T, Chen TT, Lin CM et al (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1:301–308
86.
go back to reference Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z et al (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960 Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z et al (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960
87.
go back to reference Huang CJ, Jou TS, Ho YL, Lee WH, Jeng YT et al (2005) Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn 233:1294–1303CrossRef Huang CJ, Jou TS, Ho YL, Lee WH, Jeng YT et al (2005) Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn 233:1294–1303CrossRef
88.
go back to reference Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213:207–216CrossRef Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213:207–216CrossRef
89.
go back to reference Linney E, Udvadia AJ (2004) Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol Biol 254:271–288 Linney E, Udvadia AJ (2004) Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol Biol 254:271–288
90.
go back to reference Bogers R, Mutsaerds E, Druke J, De Roode DF, Murk AJ et al (2006) Estrogenic endpoints in fish early life-stage tests: luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish. Environ Toxicol Chem 25:241–247CrossRef Bogers R, Mutsaerds E, Druke J, De Roode DF, Murk AJ et al (2006) Estrogenic endpoints in fish early life-stage tests: luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish. Environ Toxicol Chem 25:241–247CrossRef
91.
go back to reference Ashworth R, Brennan C (2005) Use of transgenic zebrafish reporter lines to study calcium signalling in development. Brief Funct Genomic Proteomic 4:186–193CrossRef Ashworth R, Brennan C (2005) Use of transgenic zebrafish reporter lines to study calcium signalling in development. Brief Funct Genomic Proteomic 4:186–193CrossRef
92.
go back to reference Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997CrossRef Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997CrossRef
93.
go back to reference Mattingly CJ, McLachlan JA, Toscano WA Jr (2001) Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrafish (Danio rerio). Environ Health Perspect 109:845–849CrossRef Mattingly CJ, McLachlan JA, Toscano WA Jr (2001) Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrafish (Danio rerio). Environ Health Perspect 109:845–849CrossRef
94.
go back to reference Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20:206–218 Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20:206–218
95.
go back to reference Hill A, Howard CV, Strahle U, Cossins A (2003) Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci 76:392–399CrossRef Hill A, Howard CV, Strahle U, Cossins A (2003) Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci 76:392–399CrossRef
96.
go back to reference Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110:1041–1046CrossRef Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110:1041–1046CrossRef
97.
go back to reference Amanuma K, Takeda H, Amanuma H, Aoki Y (2000) Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nat Biotechnol 18:62–65CrossRef Amanuma K, Takeda H, Amanuma H, Aoki Y (2000) Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nat Biotechnol 18:62–65CrossRef
98.
go back to reference Scalzo FM, Levin ED (2004) The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol Teratol 26:707–708CrossRef Scalzo FM, Levin ED (2004) The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol Teratol 26:707–708CrossRef
99.
go back to reference Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y et al (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503CrossRef Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y et al (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503CrossRef
100.
go back to reference Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33:461–468CrossRef Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33:461–468CrossRef
101.
go back to reference Carvan MJ 3rd, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26:757–768CrossRef Carvan MJ 3rd, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26:757–768CrossRef
102.
go back to reference Giacomini NJ, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250CrossRef Giacomini NJ, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250CrossRef
103.
go back to reference Levin ED, Swain HA, Donerly S, Linney E (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol 26:719–723CrossRef Levin ED, Swain HA, Donerly S, Linney E (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol 26:719–723CrossRef
104.
go back to reference Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864CrossRef Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864CrossRef
105.
go back to reference Samson JC, Goodridge R, Olobatuyi F, Weis JS (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquat Toxicol 51:369–376CrossRef Samson JC, Goodridge R, Olobatuyi F, Weis JS (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquat Toxicol 51:369–376CrossRef
106.
go back to reference Kokel D, Bryan J, Laggner C, White R, Cheung CY et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237CrossRef Kokel D, Bryan J, Laggner C, White R, Cheung CY et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237CrossRef
107.
go back to reference Corredor-Adamez M, Welten MC, Spaink HP, Jeffery JE, Schoon RT et al (2005) Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hox b 13a. Evol Dev 7:362–375CrossRef Corredor-Adamez M, Welten MC, Spaink HP, Jeffery JE, Schoon RT et al (2005) Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hox b 13a. Evol Dev 7:362–375CrossRef
108.
go back to reference Lo J, Lee S, Xu M, Liu F, Ruan H et al (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466CrossRef Lo J, Lee S, Xu M, Liu F, Ruan H et al (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466CrossRef
109.
go back to reference Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 138:351–362CrossRef Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 138:351–362CrossRef
110.
go back to reference van der Ven K, De Wit M, Keil D, Moens L, Van Leemput K et al (2005) Development and application of a brain-specific cDNA microarray for effect evaluation of neuro-active pharmaceuticals in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 141:408–417CrossRef van der Ven K, De Wit M, Keil D, Moens L, Van Leemput K et al (2005) Development and application of a brain-specific cDNA microarray for effect evaluation of neuro-active pharmaceuticals in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 141:408–417CrossRef
111.
go back to reference Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR et al (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276CrossRef Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR et al (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276CrossRef
112.
go back to reference Clark MD, Hennig S, Herwig R, Clifton SW, Marra MA et al (2001) An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library. Genome Res 11:1594–1602CrossRef Clark MD, Hennig S, Herwig R, Clifton SW, Marra MA et al (2001) An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library. Genome Res 11:1594–1602CrossRef
113.
go back to reference Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci 85:683–693CrossRef Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci 85:683–693CrossRef
114.
go back to reference Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106 Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106
115.
go back to reference Hoyt PR, Doktycz MJ, Beattie KL, Greeley MS Jr (2003) DNA microarrays detect 4-nonylphenol-induced alterations in gene expression during zebrafish early development. Ecotoxicology 12:469–474CrossRef Hoyt PR, Doktycz MJ, Beattie KL, Greeley MS Jr (2003) DNA microarrays detect 4-nonylphenol-induced alterations in gene expression during zebrafish early development. Ecotoxicology 12:469–474CrossRef
116.
go back to reference Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRef Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRef
117.
go back to reference Mandrell D, Moore A, Jephson C, Sarker M, Lang C et al (2011) Automated zebrafish chorion removal and single embryo transfer: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom (submitted) Mandrell D, Moore A, Jephson C, Sarker M, Lang C et al (2011) Automated zebrafish chorion removal and single embryo transfer: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom (submitted)
118.
go back to reference Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2:e862CrossRef Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2:e862CrossRef
119.
go back to reference Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3:461–465CrossRef Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3:461–465CrossRef
120.
go back to reference Mayr LM, Fuerst P (2008) The future of high-throughput screening. J Biomol Screen 13:443–448CrossRef Mayr LM, Fuerst P (2008) The future of high-throughput screening. J Biomol Screen 13:443–448CrossRef
121.
go back to reference Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358CrossRef Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358CrossRef
122.
go back to reference Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I et al (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68CrossRef Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I et al (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68CrossRef
123.
go back to reference Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments†. J Phys Chem C 112:18303–18313 Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments†. J Phys Chem C 112:18303–18313
124.
go back to reference MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD et al (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58CrossRef MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD et al (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58CrossRef
125.
go back to reference Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898CrossRef Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898CrossRef
126.
go back to reference Harper SL, Dahl JL, Maddux BLS, Tanguay RL, Hutchison JE (2008) Proactively designing nanomaterials to enhance performance and minimize hazard. I J Nanotechnol 5:124–142CrossRef Harper SL, Dahl JL, Maddux BLS, Tanguay RL, Hutchison JE (2008) Proactively designing nanomaterials to enhance performance and minimize hazard. I J Nanotechnol 5:124–142CrossRef
127.
go back to reference Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39CrossRef Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39CrossRef
128.
go back to reference Harper SL, Usenko C, Hutchinson JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. J Exp Nanosci 3:195–206CrossRef Harper SL, Usenko C, Hutchinson JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. J Exp Nanosci 3:195–206CrossRef
129.
go back to reference Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125CrossRef Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125CrossRef
130.
go back to reference Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef
131.
go back to reference Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRef Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRef
132.
go back to reference Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nano 3:145–150CrossRef Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nano 3:145–150CrossRef
Metadata
Title
Nanotoxicology in Green Nanoscience
Authors
Leah Wehmas
Robert L. Tanguay
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5817-3_6