Skip to main content
Top

2020 | OriginalPaper | Chapter

Nanotreating High-Zinc Al–Zn–Mg–Cu Alloy by TiC Nanoparticles

Authors : Jie Yuan, Min Zuo, Maximilian Sokoluk, Gongcheng Yao, Shuaihang Pan, Xiaochun Li

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-zinc Al–Zn–Mg–Cu alloys offer the highest strength among all aluminum alloys mostly due to high-volume precipitates after heat treatment. However, the high zinc content makes the alloys more sensitive to hot cracking and stress corrosion cracking during solidification and solid state processing. Recently, a revolutionary method, Nanotreating, becomes significant in metals processing by introducing ceramic nanoparticles into metals. It is an emerging method to modify the microstructures (both primary and secondary phases) during solidification, deformation and heat treatment. In this work, In situ TiC nanoparticles were added into Al–8.6Zn–2.8Mg–1.8Cu alloy to study the nanotreating effects. The grain size of the as-cast alloy has been reduced significantly from 272.3 μm to about 30.4 μm by 1 vol% TiC nanoparticles. The size of remaining large secondary phase after heat treatment were reduced significantly as well. Furthermore, the hardness was enhanced. Nanotreating is promising as an effective approach to modify the microstructure, relieve the manufacturing difficulty, and enhance the properties of the high-zinc Al–Zn–Mg–Cu alloys for widespread applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference (2016) Friction Stir Welding of High Strength 7XXX Aluminum Alloys, Elsevier. (2016) Friction Stir Welding of High Strength 7XXX Aluminum Alloys, Elsevier.
2.
go back to reference Xu, D.K., Rometsch, P.A., and Birbilis, N. (2012) Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties. Mater. Sci. Eng. A, 534, 244–252. Xu, D.K., Rometsch, P.A., and Birbilis, N. (2012) Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties. Mater. Sci. Eng. A, 534, 244–252.
3.
go back to reference Chen, Z., Mo, Y., and Nie, Z. (2013) Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys. Metall. Mater. Trans. A, 44 (8), 3910–3920. Chen, Z., Mo, Y., and Nie, Z. (2013) Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys. Metall. Mater. Trans. A, 44 (8), 3910–3920.
4.
go back to reference Li, H., Cao, F., Guo, S., Jia, Y., Zhang, D., Liu, Z., Wang, P., Scudino, S., and Sun, J. (2017) Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. J. Alloys Compd., 719, 89–96. Li, H., Cao, F., Guo, S., Jia, Y., Zhang, D., Liu, Z., Wang, P., Scudino, S., and Sun, J. (2017) Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. J. Alloys Compd., 719, 89–96.
5.
go back to reference Sokoluk, M., Cao, C., Pan, S., and Li, X. (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat. Commun., 10 (1), 98. Sokoluk, M., Cao, C., Pan, S., and Li, X. (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat. Commun., 10 (1), 98.
6.
go back to reference Mallikarjuna, C., Shashidhara, S.M., Mallik, U.S., and Parashivamurthy, K.I. (2011) Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites. Mater. Des., 32 (6), 3554–3559. Mallikarjuna, C., Shashidhara, S.M., Mallik, U.S., and Parashivamurthy, K.I. (2011) Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites. Mater. Des., 32 (6), 3554–3559.
7.
go back to reference Zuo, M., Sokoluk, M., Cao, C., Yuan, J., Zheng, S., and Li, X. (2019) Microstructure Control and Performance Evolution of Aluminum Alloy 7075 by Nano-Treating. Sci. Rep., 9 (1), 1–11. Zuo, M., Sokoluk, M., Cao, C., Yuan, J., Zheng, S., and Li, X. (2019) Microstructure Control and Performance Evolution of Aluminum Alloy 7075 by Nano-Treating. Sci. Rep., 9 (1), 1–11.
8.
go back to reference Cao, C., Yao, G., Jiang, L., Sokoluk, M., Wang, X., Ciston, J., Javadi, A., Guan, Z., Rosa, I.D., Xie, W., Lavernia, E.J., Schoenung, J.M., and Li, X. (2019) Bulk ultrafine grained/nanocrystalline metals via slow cooling. Sci. Adv., 5 (8), eaaw2398. Cao, C., Yao, G., Jiang, L., Sokoluk, M., Wang, X., Ciston, J., Javadi, A., Guan, Z., Rosa, I.D., Xie, W., Lavernia, E.J., Schoenung, J.M., and Li, X. (2019) Bulk ultrafine grained/nanocrystalline metals via slow cooling. Sci. Adv., 5 (8), eaaw2398.
9.
go back to reference Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., and Pollock, T.M. (2017) 3D printing of high-strength aluminium alloys. Nature, 549 (7672), 365–369. Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., and Pollock, T.M. (2017) 3D printing of high-strength aluminium alloys. Nature, 549 (7672), 365–369.
10.
go back to reference Cao, C., Chen, L., Xu, J., Zhao, J., Pozuelo, M., and Li, X. (2016) Phase control in immiscible Zn-Bi alloy by tungsten nanoparticles. Mater. Lett., 174, 213–216. Cao, C., Chen, L., Xu, J., Zhao, J., Pozuelo, M., and Li, X. (2016) Phase control in immiscible Zn-Bi alloy by tungsten nanoparticles. Mater. Lett., 174, 213–216.
11.
go back to reference Chen, L.-Y., Xu, J.-Q., Choi, H., Konishi, H., Jin, S., and Li, X.-C. (2014) Rapid control of phase growth by nanoparticles. Nat. Commun., 5, 3879. Chen, L.-Y., Xu, J.-Q., Choi, H., Konishi, H., Jin, S., and Li, X.-C. (2014) Rapid control of phase growth by nanoparticles. Nat. Commun., 5, 3879.
12.
go back to reference Saboori, A., Padovano, E., Pavese, M., Dieringa, H., and Badini, C. (2017) Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles. Materials, 10 (12). Saboori, A., Padovano, E., Pavese, M., Dieringa, H., and Badini, C. (2017) Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles. Materials, 10 (12).
13.
go back to reference Li, X., Cai, Q., Zhao, B., Liu, B., and Li, W. (2018) Precipitation behaviors and properties of solution-aging Al-Zn-Mg-Cu alloy refined with TiN nanoparticles. J. Alloys Compd., 746, 462–470. Li, X., Cai, Q., Zhao, B., Liu, B., and Li, W. (2018) Precipitation behaviors and properties of solution-aging Al-Zn-Mg-Cu alloy refined with TiN nanoparticles. J. Alloys Compd., 746, 462–470.
14.
go back to reference Liu, W., Cao, C., Xu, J., Wang, X., and Li, X. (2016) Molten salt assisted solidification nanoprocessing of Al-TiC nanocomposites. Mater. Lett., 185, 392–395. Liu, W., Cao, C., Xu, J., Wang, X., and Li, X. (2016) Molten salt assisted solidification nanoprocessing of Al-TiC nanocomposites. Mater. Lett., 185, 392–395.
15.
go back to reference Li, Z., Chen, D., Wang, H., Lavernia, E.J., and Shan, A. (2014) Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling. J. Mater. Res. Warrendale, 29 (21), 2514–2524. Li, Z., Chen, D., Wang, H., Lavernia, E.J., and Shan, A. (2014) Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling. J. Mater. Res. Warrendale, 29 (21), 2514–2524.
16.
go back to reference Chen, L.-Y., Xu, J.-Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.-M., Mathaudhu, S., and Li, X.-C. (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 528 (7583), 539–543. Chen, L.-Y., Xu, J.-Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.-M., Mathaudhu, S., and Li, X.-C. (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 528 (7583), 539–543.
17.
go back to reference Tjong, S.C., and Ma, Z.Y. (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep., 29 (3), 49–113. Tjong, S.C., and Ma, Z.Y. (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep., 29 (3), 49–113.
18.
go back to reference Xu, J.Q., Chen, L.Y., Choi, H., and Li, X.C. (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J. Phys. Condens. Matter, 24 (25), 255304. Xu, J.Q., Chen, L.Y., Choi, H., and Li, X.C. (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J. Phys. Condens. Matter, 24 (25), 255304.
19.
go back to reference Greer, A.L. (2016) Overview: Application of heterogeneous nucleation in grain-refining of metals. J. Chem. Phys., 145 (21), 211704. Greer, A.L. (2016) Overview: Application of heterogeneous nucleation in grain-refining of metals. J. Chem. Phys., 145 (21), 211704.
20.
go back to reference Katsarou, L., Mounib, M., Lefebvre, W., Vorozhtsov, S., Pavese, M., Badini, C., Molina-Aldareguia, J.M., Jimenez, C.C., Pérez Prado, M.T., and Dieringa, H. (2016) Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring. Mater. Sci. Eng. A, 659, 84–92. Katsarou, L., Mounib, M., Lefebvre, W., Vorozhtsov, S., Pavese, M., Badini, C., Molina-Aldareguia, J.M., Jimenez, C.C., Pérez Prado, M.T., and Dieringa, H. (2016) Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring. Mater. Sci. Eng. A, 659, 84–92.
21.
go back to reference Sha, G., and Cerezo, A. (2004) Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater., 52 (15), 4503–4516. Sha, G., and Cerezo, A. (2004) Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater., 52 (15), 4503–4516.
22.
go back to reference Wu, C., Ma, K., Zhang, D., Wu, J., Xiong, S., Luo, G., Zhang, J., Chen, F., Shen, Q., Zhang, L., and Lavernia, E.J. (2017) Precipitation phenomena in Al-Zn-Mg alloy matrix composites reinforced with B 4 C particles. Sci. Rep., 7 (1), 9589. Wu, C., Ma, K., Zhang, D., Wu, J., Xiong, S., Luo, G., Zhang, J., Chen, F., Shen, Q., Zhang, L., and Lavernia, E.J. (2017) Precipitation phenomena in Al-Zn-Mg alloy matrix composites reinforced with B 4 C particles. Sci. Rep., 7 (1), 9589.
Metadata
Title
Nanotreating High-Zinc Al–Zn–Mg–Cu Alloy by TiC Nanoparticles
Authors
Jie Yuan
Min Zuo
Maximilian Sokoluk
Gongcheng Yao
Shuaihang Pan
Xiaochun Li
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_46

Premium Partners