Skip to main content
Top

2016 | OriginalPaper | Chapter

10. Nanowire Field-Effect Transistor Sensors

Authors : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Published in: Nanowires

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sensitive and quantitative analysis of proteins and other biochemical species are central to disease diagnosis, drug screening and proteomic studies. Research advances exploiting SiNWs configured as FETs for biomolecule analysis have emerged as one of the most promising and powerful platforms for label-free, real-time, and sensitive electrical detection of proteins as well as many other biological species. In this chapter, we first briefly introduce the fundamental principle for semiconductor NW-FET sensors. Representative examples of semiconductor NW sensors are then summarized for sensitive chemical and biomolecule detection, including proteins, nucleic acids, viruses and small molecules. In addition, this chapter discusses several electrical and surface functionalization methods for enhancing the sensitivity of semiconductor NW sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Vigneshvar, C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications–an overview. Front. Bioeng. Biotechnol. 4, 11 (2016)CrossRef S. Vigneshvar, C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications–an overview. Front. Bioeng. Biotechnol. 4, 11 (2016)CrossRef
2.
go back to reference J. Li, N. Wu, Biosensors Based on Nanomaterials and Nanodevices (CRC Press, Boca Raton, 2013) J. Li, N. Wu, Biosensors Based on Nanomaterials and Nanodevices (CRC Press, Boca Raton, 2013)
3.
go back to reference Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013)CrossRef Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013)CrossRef
4.
go back to reference A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)CrossRef A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)CrossRef
5.
go back to reference K.-I. Chen, B.-R. Li, Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRef K.-I. Chen, B.-R. Li, Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRef
6.
go back to reference F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 32(02), 142–149 (2007)CrossRef F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 32(02), 142–149 (2007)CrossRef
7.
go back to reference J. Janata, Historical review. Twenty years of ion-selective field-effect transistors. Analyst 119(11), 2275–2278 (1994)ADSCrossRef J. Janata, Historical review. Twenty years of ion-selective field-effect transistors. Analyst 119(11), 2275–2278 (1994)ADSCrossRef
8.
go back to reference Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)ADSCrossRef Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)ADSCrossRef
9.
go back to reference C. Li, M. Curreli, H. Lin, B. Lei, F. Ishikawa, R. Datar, R.J. Cote, M.E. Thompson, C. Zhou, Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J. Am. Chem. Soc. 127(36), 12484–12485 (2005)CrossRef C. Li, M. Curreli, H. Lin, B. Lei, F. Ishikawa, R. Datar, R.J. Cote, M.E. Thompson, C. Zhou, Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J. Am. Chem. Soc. 127(36), 12484–12485 (2005)CrossRef
10.
go back to reference R. Yu, C. Pan, Z.L. Wang, High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy Environ. Sci. 6(2), 494–499 (2013)CrossRef R. Yu, C. Pan, Z.L. Wang, High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy Environ. Sci. 6(2), 494–499 (2013)CrossRef
11.
go back to reference Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)ADSCrossRef Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)ADSCrossRef
12.
go back to reference Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)ADSCrossRef Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)ADSCrossRef
13.
go back to reference F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef
14.
go back to reference G. MacBeath, S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science 289(5485), 1760–1763 (2000)ADS G. MacBeath, S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science 289(5485), 1760–1763 (2000)ADS
15.
go back to reference N. Misra, J.A. Martinez, S.-C.J. Huang, Y. Wang, P. Stroeve, C.P. Grigoropoulos, A. Noy, Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 106(33), 13780–13784 (2009)ADSCrossRef N. Misra, J.A. Martinez, S.-C.J. Huang, Y. Wang, P. Stroeve, C.P. Grigoropoulos, A. Noy, Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 106(33), 13780–13784 (2009)ADSCrossRef
16.
go back to reference T.-W. Lin, P.-J. Hsieh, C.-L. Lin, Y.-Y. Fang, J.-X. Yang, C.-C. Tsai, P.-L. Chiang, C.-Y. Pan, Y.-T. Chen, Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc. Natl. Acad. Sci. U.S.A. 107(3), 1047–1052 (2010)ADSCrossRef T.-W. Lin, P.-J. Hsieh, C.-L. Lin, Y.-Y. Fang, J.-X. Yang, C.-C. Tsai, P.-L. Chiang, C.-Y. Pan, Y.-T. Chen, Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc. Natl. Acad. Sci. U.S.A. 107(3), 1047–1052 (2010)ADSCrossRef
17.
go back to reference J.H. Chua, R.-E. Chee, A. Agarwal, S.M. Wong, G.-J. Zhang, Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal. Chem. 81(15), 6266–6271 (2009)CrossRef J.H. Chua, R.-E. Chee, A. Agarwal, S.M. Wong, G.-J. Zhang, Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal. Chem. 81(15), 6266–6271 (2009)CrossRef
18.
go back to reference F.N. Ishikawa, M. Curreli, H.-K. Chang, P.-C. Chen, R. Zhang, R.J. Cote, M.E. Thompson, C. Zhou, A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3(12), 3969–3976 (2009)CrossRef F.N. Ishikawa, M. Curreli, H.-K. Chang, P.-C. Chen, R. Zhang, R.J. Cote, M.E. Thompson, C. Zhou, A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3(12), 3969–3976 (2009)CrossRef
19.
go back to reference R. Tian, S. Regonda, J. Gao, Y. Liu, W. Hu, Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab Chip 11(11), 1952–1961 (2011)CrossRef R. Tian, S. Regonda, J. Gao, Y. Liu, W. Hu, Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab Chip 11(11), 1952–1961 (2011)CrossRef
20.
go back to reference P.R. Srinivas, B.S. Kramer, S. Srivastava, Trends in biomarker research for cancer detection. Lancet Oncol. 2(11), 698–704 (2001)CrossRef P.R. Srinivas, B.S. Kramer, S. Srivastava, Trends in biomarker research for cancer detection. Lancet Oncol. 2(11), 698–704 (2001)CrossRef
21.
go back to reference J.D. Wulfkuhle, L.A. Liotta, E.F. Petricoin, Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3(4), 267–275 (2003)CrossRef J.D. Wulfkuhle, L.A. Liotta, E.F. Petricoin, Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3(4), 267–275 (2003)CrossRef
22.
go back to reference G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)CrossRef G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)CrossRef
23.
go back to reference E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)ADSCrossRef E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)ADSCrossRef
24.
go back to reference A. Ganguly, C.-P. Chen, Y.-T. Lai, C.-C. Kuo, C.-W. Hsu, K.-H. Chen, L.-C. Chen, Functionalized GaN nanowire-based electrode for direct label-free voltammetric detection of DNA hybridization. J. Mater. Chem. 19(7), 928–933 (2009)CrossRef A. Ganguly, C.-P. Chen, Y.-T. Lai, C.-C. Kuo, C.-W. Hsu, K.-H. Chen, L.-C. Chen, Functionalized GaN nanowire-based electrode for direct label-free voltammetric detection of DNA hybridization. J. Mater. Chem. 19(7), 928–933 (2009)CrossRef
25.
go back to reference J.-I. Hahm, C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)ADSCrossRef J.-I. Hahm, C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)ADSCrossRef
26.
go back to reference Z. Li, Y. Chen, X. Li, T. Kamins, K. Nauka, R.S. Williams, Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4(2), 245–247 (2004)ADSCrossRef Z. Li, Y. Chen, X. Li, T. Kamins, K. Nauka, R.S. Williams, Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4(2), 245–247 (2004)ADSCrossRef
27.
go back to reference N. Lu, A. Gao, P. Dai, S. Song, C. Fan, Y. Wang, T. Li, CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 10(10), 2022–2028 (2014)CrossRef N. Lu, A. Gao, P. Dai, S. Song, C. Fan, Y. Wang, T. Li, CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 10(10), 2022–2028 (2014)CrossRef
28.
go back to reference P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037), 1497–1500 (1991)ADSCrossRef P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037), 1497–1500 (1991)ADSCrossRef
29.
go back to reference K.K. Jensen, H. Ørum, P.E. Nielsen, B. Nordén, Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36(16), 5072–5077 (1997)CrossRef K.K. Jensen, H. Ørum, P.E. Nielsen, B. Nordén, Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36(16), 5072–5077 (1997)CrossRef
30.
go back to reference G.-J. Zhang, G. Zhang, J.H. Chua, R.-E. Chee, E.H. Wong, A. Agarwal, K.D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian, DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 8(4), 1066–1070 (2008)ADSCrossRef G.-J. Zhang, G. Zhang, J.H. Chua, R.-E. Chee, E.H. Wong, A. Agarwal, K.D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian, DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 8(4), 1066–1070 (2008)ADSCrossRef
31.
go back to reference Y.L. Bunimovich, Y.S. Shin, W.-S. Yeo, M. Amori, G. Kwong, J.R. Heath, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128(50), 16323–16331 (2006)CrossRef Y.L. Bunimovich, Y.S. Shin, W.-S. Yeo, M. Amori, G. Kwong, J.R. Heath, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128(50), 16323–16331 (2006)CrossRef
32.
go back to reference K.A. Cissell, S. Shrestha, S.K. Deo, MicroRNA detection: challenges for the analytical chemist. Anal. Chem. 79(13), 4754–4761 (2007)CrossRef K.A. Cissell, S. Shrestha, S.K. Deo, MicroRNA detection: challenges for the analytical chemist. Anal. Chem. 79(13), 4754–4761 (2007)CrossRef
33.
go back to reference G.-J. Zhang, J.H. Chua, R.-E. Chee, A. Agarwal, S.M. Wong, Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24(8), 2504–2508 (2009)CrossRef G.-J. Zhang, J.H. Chua, R.-E. Chee, A. Agarwal, S.M. Wong, Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24(8), 2504–2508 (2009)CrossRef
34.
go back to reference E.G. Strauss, J.H. Strauss, Viruses and human disease (Academic Press, San Diego, 2007)MATH E.G. Strauss, J.H. Strauss, Viruses and human disease (Academic Press, San Diego, 2007)MATH
35.
go back to reference F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101(39), 14017–14022 (2004)ADSCrossRef F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101(39), 14017–14022 (2004)ADSCrossRef
36.
go back to reference F. Shen, J. Wang, Z. Xu, Y. Wu, Q. Chen, X. Li, X. Jie, L. Li, M. Yao, X. Guo, Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12(7), 3722–3730 (2012)ADSCrossRef F. Shen, J. Wang, Z. Xu, Y. Wu, Q. Chen, X. Li, X. Jie, L. Li, M. Yao, X. Guo, Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12(7), 3722–3730 (2012)ADSCrossRef
37.
go back to reference G.-J. Zhang, L. Zhang, M.J. Huang, Z.H.H. Luo, G.K.I. Tay, E.-J.A. Lim, T.G. Kang, Y. Chen, Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 146(1), 138–144 (2010)CrossRef G.-J. Zhang, L. Zhang, M.J. Huang, Z.H.H. Luo, G.K.I. Tay, E.-J.A. Lim, T.G. Kang, Y. Chen, Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 146(1), 138–144 (2010)CrossRef
38.
go back to reference W.U. Wang, C. Chen, K.-H. Lin, Y. Fang, C.M. Lieber, Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005)ADSCrossRef W.U. Wang, C. Chen, K.-H. Lin, Y. Fang, C.M. Lieber, Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005)ADSCrossRef
39.
go back to reference M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)ADSCrossRef M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)ADSCrossRef
40.
go back to reference M.C. McAlpine, H.D. Agnew, R.D. Rohde, M. Blanco, H. Ahmad, A.D. Stuparu, W.A. Goddard Iii, J.R. Heath, Peptide–nanowire hybrid materials for selective sensing of small molecules. J. Am. Chem. Soc. 130(29), 9583–9589 (2008)CrossRef M.C. McAlpine, H.D. Agnew, R.D. Rohde, M. Blanco, H. Ahmad, A.D. Stuparu, W.A. Goddard Iii, J.R. Heath, Peptide–nanowire hybrid materials for selective sensing of small molecules. J. Am. Chem. Soc. 130(29), 9583–9589 (2008)CrossRef
41.
go back to reference Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, F. Patolsky, Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 49(38), 6830–6835 (2010)CrossRef Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, F. Patolsky, Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 49(38), 6830–6835 (2010)CrossRef
42.
go back to reference Y. Paska, T. Stelzner, S. Christiansen, H. Haick, Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano 5(7), 5620–5626 (2011)CrossRef Y. Paska, T. Stelzner, S. Christiansen, H. Haick, Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano 5(7), 5620–5626 (2011)CrossRef
43.
go back to reference B. Wang, J.C. Cancilla, J.S. Torrecilla, H. Haick, Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett. 14(2), 933–938 (2014)ADSCrossRef B. Wang, J.C. Cancilla, J.S. Torrecilla, H. Haick, Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett. 14(2), 933–938 (2014)ADSCrossRef
44.
go back to reference C. Cheng, H.J. Fan, Branched nanowires: synthesis and energy applications. Nano Today 7(4), 327–343 (2012)CrossRef C. Cheng, H.J. Fan, Branched nanowires: synthesis and energy applications. Nano Today 7(4), 327–343 (2012)CrossRef
45.
go back to reference D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4(5), 871–874 (2004)ADSCrossRef D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4(5), 871–874 (2004)ADSCrossRef
46.
go back to reference K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3(6), 380–384 (2004)ADSCrossRef K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3(6), 380–384 (2004)ADSCrossRef
47.
go back to reference X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 108(30), 12212–12216 (2011)ADSCrossRef X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 108(30), 12212–12216 (2011)ADSCrossRef
48.
go back to reference L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2(6), 382–385 (2003)ADSCrossRef L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2(6), 382–385 (2003)ADSCrossRef
49.
go back to reference H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef
50.
go back to reference S.M. Sze, K.K. Ng, Physics of Semiconductor Devices. (Wiley, 2006) S.M. Sze, K.K. Ng, Physics of Semiconductor Devices. (Wiley, 2006)
51.
go back to reference X.P. Gao, G. Zheng, C.M. Lieber, Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10(2), 547–552 (2010)ADSCrossRef X.P. Gao, G. Zheng, C.M. Lieber, Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10(2), 547–552 (2010)ADSCrossRef
52.
go back to reference E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed, Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405–3409 (2007)ADSCrossRef E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed, Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405–3409 (2007)ADSCrossRef
53.
go back to reference K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, E. Tamiya, Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79(2), 782–787 (2007)CrossRef K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, E. Tamiya, Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79(2), 782–787 (2007)CrossRef
54.
go back to reference R. Elnathan, M. Kwiat, A. Pevzner, Y. Engel, L. Burstein, A. Khatchtourints, A. Lichtenstein, R. Kantaev, F. Patolsky, Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12(10), 5245–5254 (2012)ADSCrossRef R. Elnathan, M. Kwiat, A. Pevzner, Y. Engel, L. Burstein, A. Khatchtourints, A. Lichtenstein, R. Kantaev, F. Patolsky, Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12(10), 5245–5254 (2012)ADSCrossRef
55.
go back to reference G.S. Kulkarni, Z. Zhong, Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett. 12(2), 719–723 (2012)ADSCrossRef G.S. Kulkarni, Z. Zhong, Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett. 12(2), 719–723 (2012)ADSCrossRef
56.
go back to reference N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu, C.M. Lieber, General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett. 15(3), 2143–2148 (2015)ADSCrossRef N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu, C.M. Lieber, General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett. 15(3), 2143–2148 (2015)ADSCrossRef
57.
go back to reference J.R. Gong, Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. Small 6(8), 967–973 (2010)CrossRef J.R. Gong, Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. Small 6(8), 967–973 (2010)CrossRef
58.
go back to reference G. Zheng, Semiconductor nanowire FET sensors: label-free, ultrasensitive, multiplexed biomolecule detection and biophysical studies (Harvard University, Cambridge, 2006) G. Zheng, Semiconductor nanowire FET sensors: label-free, ultrasensitive, multiplexed biomolecule detection and biophysical studies (Harvard University, Cambridge, 2006)
59.
go back to reference P.K. Wong, C.-Y. Chen, T.-H. Wang, C.-M. Ho, Electrokinetic bioprocessor for concentrating cells and molecules. Anal. Chem. 76(23), 6908–6914 (2004)CrossRef P.K. Wong, C.-Y. Chen, T.-H. Wang, C.-M. Ho, Electrokinetic bioprocessor for concentrating cells and molecules. Anal. Chem. 76(23), 6908–6914 (2004)CrossRef
60.
go back to reference G. Zheng, X.P. Gao, C.M. Lieber, Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 10(8), 3179–3183 (2010)ADSCrossRef G. Zheng, X.P. Gao, C.M. Lieber, Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 10(8), 3179–3183 (2010)ADSCrossRef
61.
go back to reference M. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60(2), 537 (1988)ADSCrossRef M. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60(2), 537 (1988)ADSCrossRef
62.
go back to reference E. Simoen, C. Claeys, On the flicker noise in submicron silicon MOSFETs. Solid State Electron. 43(5), 865–882 (1999)ADSCrossRef E. Simoen, C. Claeys, On the flicker noise in submicron silicon MOSFETs. Solid State Electron. 43(5), 865–882 (1999)ADSCrossRef
63.
go back to reference P. Xie, Q. Xiong, Y. Fang, Q. Qing, C.M. Lieber, Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7(2), 119–125 (2012)ADSCrossRef P. Xie, Q. Xiong, Y. Fang, Q. Qing, C.M. Lieber, Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7(2), 119–125 (2012)ADSCrossRef
64.
go back to reference D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146–1153 (2008)CrossRef D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146–1153 (2008)CrossRef
65.
go back to reference J.-H. Ahn, S.-J. Choi, J.-W. Han, T.J. Park, S.Y. Lee, Y.-K. Choi, Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 10(8), 2934–2938 (2010)ADSCrossRef J.-H. Ahn, S.-J. Choi, J.-W. Han, T.J. Park, S.Y. Lee, Y.-K. Choi, Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 10(8), 2934–2938 (2010)ADSCrossRef
66.
go back to reference M.S. Parihar, A. Kranti, Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)ADSCrossRef M.S. Parihar, A. Kranti, Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)ADSCrossRef
67.
go back to reference M.S. Makowski, A. Ivanisevic, Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small 7(14), 1863–1875 (2011)CrossRef M.S. Makowski, A. Ivanisevic, Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small 7(14), 1863–1875 (2011)CrossRef
68.
go back to reference K.S. Kim, H.-S. Lee, J.-A. Yang, M.-H. Jo, S.K. Hahn, The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 20(23), 235501 (2009)ADSCrossRef K.S. Kim, H.-S. Lee, J.-A. Yang, M.-H. Jo, S.K. Hahn, The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 20(23), 235501 (2009)ADSCrossRef
69.
go back to reference E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, D.J. Mooney, M.A. Reed, T.M. Fahmy, Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010)ADSCrossRef E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, D.J. Mooney, M.A. Reed, T.M. Fahmy, Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010)ADSCrossRef
70.
go back to reference G.-J. Zhang, K.T.C. Chai, H.Z.H. Luo, J.M. Huang, I.G.K. Tay, A.E.-J. Lim, M. Je, Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens. Bioelectron. 35(1), 218–223 (2012)CrossRef G.-J. Zhang, K.T.C. Chai, H.Z.H. Luo, J.M. Huang, I.G.K. Tay, A.E.-J. Lim, M. Je, Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens. Bioelectron. 35(1), 218–223 (2012)CrossRef
71.
go back to reference W. Zhou, X. Dai, T.-M. Fu, C. Xie, J. Liu, C.M. Lieber, Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 14(3), 1614–1619 (2014)ADSCrossRef W. Zhou, X. Dai, T.-M. Fu, C. Xie, J. Liu, C.M. Lieber, Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 14(3), 1614–1619 (2014)ADSCrossRef
72.
73.
go back to reference Y. Cheng, Single-particle cryo-EM at crystallographic resolution. Cell 161(3), 450–457 (2015)CrossRef Y. Cheng, Single-particle cryo-EM at crystallographic resolution. Cell 161(3), 450–457 (2015)CrossRef
74.
go back to reference B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane, C.M. Lieber, Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)ADSCrossRef B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane, C.M. Lieber, Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)ADSCrossRef
75.
go back to reference J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015)ADSCrossRef J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015)ADSCrossRef
76.
go back to reference F. Patolsky, G. Zheng, C.M. Lieber, Nanowire sensors for medicine and the life sciences. Nanomedicine 1, 55–65 (2006)CrossRef F. Patolsky, G. Zheng, C.M. Lieber, Nanowire sensors for medicine and the life sciences. Nanomedicine 1, 55–65 (2006)CrossRef
Metadata
Title
Nanowire Field-Effect Transistor Sensors
Authors
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_10

Premium Partners