Skip to main content
Top

2016 | OriginalPaper | Chapter

11. Nanowire Interfaces to Cells and Tissue

Authors : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Published in: Nanowires

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interface between nanosystems and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics and many areas of engineering, biotechnology and medicine. The combination of these diverse areas of research promises to yield revolutionary advances in healthcare, medicine and the life science through, for example, the creation of new and powerful tools that enable direct, sensitive and rapid analysis of biological species and cellular activities. Research at the interface between nanomaterials and biology could yield breakthroughs in fundamental science and lead to revolutionary technologies. In this chapter, we will introduce studies focused on building the interface of NWs to cells and tissues, including extracellular and intracellular signal recording, synthetic cyborg tissues and in vivo recording.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, Nanomaterials for neural interfaces. Adv. Mater. 21(40), 3970–4004 (2009)CrossRef N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, Nanomaterials for neural interfaces. Adv. Mater. 21(40), 3970–4004 (2009)CrossRef
2.
go back to reference A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)CrossRef A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)CrossRef
3.
go back to reference K. Jain, Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 4(4), 287–291 (2007)CrossRef K. Jain, Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 4(4), 287–291 (2007)CrossRef
4.
go back to reference S.J. Luck, in An Introduction to the Event-Related Potential Technique (MIT Press, Cambridge, 2014) S.J. Luck, in An Introduction to the Event-Related Potential Technique (MIT Press, Cambridge, 2014)
5.
go back to reference M. Guye, G. Bettus, F. Bartolomei, P.J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magn. Reson. Mater. Phys. Biol. Med. 23(5–6), 409–421 (2010)CrossRef M. Guye, G. Bettus, F. Bartolomei, P.J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magn. Reson. Mater. Phys. Biol. Med. 23(5–6), 409–421 (2010)CrossRef
6.
go back to reference N.K. Logothetis, What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)ADSCrossRef N.K. Logothetis, What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)ADSCrossRef
7.
go back to reference G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)CrossRef G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)CrossRef
8.
go back to reference M.S. Siegel, E.Y. Isacoff, A genetically encoded optical probe of membrane voltage. Neuron 19(4), 735–741 (1997)CrossRef M.S. Siegel, E.Y. Isacoff, A genetically encoded optical probe of membrane voltage. Neuron 19(4), 735–741 (1997)CrossRef
9.
go back to reference C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100(12), 7319–7324 (2003)ADSCrossRef C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100(12), 7319–7324 (2003)ADSCrossRef
10.
go back to reference W. Mittmann, D.J. Wallace, U. Czubayko, J.T. Herb, A.T. Schaefer, L.L. Looger, W. Denk, J.N. Kerr, Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat. Neurosci. 14(8), 1089–1093 (2011)CrossRef W. Mittmann, D.J. Wallace, U. Czubayko, J.T. Herb, A.T. Schaefer, L.L. Looger, W. Denk, J.N. Kerr, Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat. Neurosci. 14(8), 1089–1093 (2011)CrossRef
11.
go back to reference M. Scanziani, M. Häusser, Electrophysiology in the age of light. Nature 461(7266), 930–939 (2009)ADSCrossRef M. Scanziani, M. Häusser, Electrophysiology in the age of light. Nature 461(7266), 930–939 (2009)ADSCrossRef
12.
go back to reference M.R. Warden, J.A. Cardin, K. Deisseroth, Optical neural interfaces. Annu. Rev. Biomed. Eng. 16, 103 (2014)CrossRef M.R. Warden, J.A. Cardin, K. Deisseroth, Optical neural interfaces. Annu. Rev. Biomed. Eng. 16, 103 (2014)CrossRef
13.
go back to reference J.M. Kralj, A.D. Douglass, D.R. Hochbaum, D. Maclaurin, A.E. Cohen, Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9(1), 90–95 (2012)CrossRef J.M. Kralj, A.D. Douglass, D.R. Hochbaum, D. Maclaurin, A.E. Cohen, Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9(1), 90–95 (2012)CrossRef
14.
go back to reference G.A. Silva, Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7(1), 65–74 (2006)CrossRef G.A. Silva, Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7(1), 65–74 (2006)CrossRef
15.
go back to reference A.P. Alivisatos, M. Chun, G.M. Church, R.J. Greenspan, M.L. Roukes, R. Yuste, The brain activity map project and the challenge of functional connectomics. Neuron 74(6), 970–974 (2012)CrossRef A.P. Alivisatos, M. Chun, G.M. Church, R.J. Greenspan, M.L. Roukes, R. Yuste, The brain activity map project and the challenge of functional connectomics. Neuron 74(6), 970–974 (2012)CrossRef
16.
go back to reference A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, J.P. Donoghue, S.E. Fraser, J. Lippincott-Schwartz, L.L. Looger, Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3), 1850–1866 (2013)CrossRef A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, J.P. Donoghue, S.E. Fraser, J. Lippincott-Schwartz, L.L. Looger, Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3), 1850–1866 (2013)CrossRef
17.
go back to reference M.R. Angle, B. Cui, N.A. Melosh, Nanotechnology and neurophysiology. Curr. Opin. Neurobiol. 32, 132–140 (2015)CrossRef M.R. Angle, B. Cui, N.A. Melosh, Nanotechnology and neurophysiology. Curr. Opin. Neurobiol. 32, 132–140 (2015)CrossRef
18.
go back to reference C. Thomas, P. Springer, G. Loeb, Y. Berwald-Netter, L. Okun, A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74(1), 61–66 (1972)CrossRef C. Thomas, P. Springer, G. Loeb, Y. Berwald-Netter, L. Okun, A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74(1), 61–66 (1972)CrossRef
19.
go back to reference A.F. Johnstone, G.W. Gross, D.G. Weiss, O.H.-U. Schroeder, A. Gramowski, T.J. Shafer, Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4), 331–350 (2010)CrossRef A.F. Johnstone, G.W. Gross, D.G. Weiss, O.H.-U. Schroeder, A. Gramowski, T.J. Shafer, Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4), 331–350 (2010)CrossRef
20.
go back to reference L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, S. Martinoia, Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18), 2644–2651 (2009)CrossRef L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, S. Martinoia, Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18), 2644–2651 (2009)CrossRef
21.
go back to reference Y. Nam, B.C. Wheeler, In vitro microelectrode array technology and neural recordings. Crit. Rev. Biomed. Eng. 39(1) (2011) Y. Nam, B.C. Wheeler, In vitro microelectrode array technology and neural recordings. Crit. Rev. Biomed. Eng. 39(1) (2011)
22.
go back to reference R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, Single-cell recording and stimulation with a 16 k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12(7), 1274–1280 (2012)CrossRef R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, Single-cell recording and stimulation with a 16 k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12(7), 1274–1280 (2012)CrossRef
23.
go back to reference L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)ADSCrossRef L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)ADSCrossRef
24.
go back to reference A. Berényi, Z. Somogyvari, A.J. Nagy, L. Roux, J.D. Long, S. Fujisawa, E. Stark, A. Leonardo, T.D. Harris, G. Buzsáki, Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111(5), 1132–1149 (2014)CrossRef A. Berényi, Z. Somogyvari, A.J. Nagy, L. Roux, J.D. Long, S. Fujisawa, E. Stark, A. Leonardo, T.D. Harris, G. Buzsáki, Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111(5), 1132–1149 (2014)CrossRef
25.
go back to reference G.W. Gross, B.K. Rhoades, D.L. Reust, F.U. Schwalm, Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. J. Neurosci. Methods 50(2), 131–143 (1993)CrossRef G.W. Gross, B.K. Rhoades, D.L. Reust, F.U. Schwalm, Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. J. Neurosci. Methods 50(2), 131–143 (1993)CrossRef
26.
go back to reference M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2), 83–94 (2013)ADSCrossRef M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2), 83–94 (2013)ADSCrossRef
27.
go back to reference M.J. Nelson, P. Pouget, E.A. Nilsen, C.D. Patten, J.D. Schall, Review of signal distortion through metal microelectrode recording circuits and filters. J. Neurosci. Methods 169(1), 141–157 (2008)CrossRef M.J. Nelson, P. Pouget, E.A. Nilsen, C.D. Patten, J.D. Schall, Review of signal distortion through metal microelectrode recording circuits and filters. J. Neurosci. Methods 169(1), 141–157 (2008)CrossRef
28.
go back to reference J. Pine, Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2(1), 19–31 (1980)CrossRef J. Pine, Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2(1), 19–31 (1980)CrossRef
29.
go back to reference J.-H. Kim, G. Kang, Y. Nam, Y.-K. Choi, Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology 21(8), 085303 (2010)ADSCrossRef J.-H. Kim, G. Kang, Y. Nam, Y.-K. Choi, Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology 21(8), 085303 (2010)ADSCrossRef
30.
go back to reference E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, G.W. Gross, Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)CrossRef E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, G.W. Gross, Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)CrossRef
31.
go back to reference L. Bareket-Keren, Y. Hanein, Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 122 (2012) L. Bareket-Keren, Y. Hanein, Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 122 (2012)
32.
go back to reference P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)ADSCrossRef P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)ADSCrossRef
33.
go back to reference M. Voelker, P. Fromherz, Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2), 206–210 (2005)CrossRef M. Voelker, P. Fromherz, Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2), 206–210 (2005)CrossRef
34.
go back to reference G. Wrobel, M. Höller, S. Ingebrandt, S. Dieluweit, F. Sommerhage, H.P. Bochem, A. Offenhäusser, Transmission electron microscopy study of the cell–sensor interface. J. R. Soc. Interface 5(19), 213–222 (2008)CrossRef G. Wrobel, M. Höller, S. Ingebrandt, S. Dieluweit, F. Sommerhage, H.P. Bochem, A. Offenhäusser, Transmission electron microscopy study of the cell–sensor interface. J. R. Soc. Interface 5(19), 213–222 (2008)CrossRef
35.
go back to reference F. Santoro, S. Dasgupta, J. Schnitker, T. Auth, E. Neumann, G. Panaitov, G. Gompper, A. Offenhäusser, Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS Nano 8(7), 6713–6723 (2014)CrossRef F. Santoro, S. Dasgupta, J. Schnitker, T. Auth, E. Neumann, G. Panaitov, G. Gompper, A. Offenhäusser, Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS Nano 8(7), 6713–6723 (2014)CrossRef
36.
go back to reference K. Toma, H. Kano, A. Offenhäusser, Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8(12), 12612–12619 (2014)CrossRef K. Toma, H. Kano, A. Offenhäusser, Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8(12), 12612–12619 (2014)CrossRef
37.
go back to reference J. Van Pelt, P.S. Wolters, M. Corner, W.L. Rutten, G.J. Ramakers, Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans. Biomed. Eng. 51(11), 2051–2062 (2004)CrossRef J. Van Pelt, P.S. Wolters, M. Corner, W.L. Rutten, G.J. Ramakers, Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans. Biomed. Eng. 51(11), 2051–2062 (2004)CrossRef
38.
go back to reference S. Morefield, E. Keefer, K. Chapman, G. Gross, Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens. Bioelectron. 15(7), 383–396 (2000)CrossRef S. Morefield, E. Keefer, K. Chapman, G. Gross, Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens. Bioelectron. 15(7), 383–396 (2000)CrossRef
39.
go back to reference M.E. Ruaro, P. Bonifazi, V. Torre, Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 52(3), 371–383 (2005)CrossRef M.E. Ruaro, P. Bonifazi, V. Torre, Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 52(3), 371–383 (2005)CrossRef
40.
go back to reference H. Craighead, S. Turner, R. Davis, C. James, A. Perez, P.S. John, M. Isaacson, L. Kam, W. Shain, J. Turner, Chemical and topographical surface modification for control of central nervous system cell adhesion. Biomed. Microdevices 1(1), 49–64 (1998)CrossRef H. Craighead, S. Turner, R. Davis, C. James, A. Perez, P.S. John, M. Isaacson, L. Kam, W. Shain, J. Turner, Chemical and topographical surface modification for control of central nervous system cell adhesion. Biomed. Microdevices 1(1), 49–64 (1998)CrossRef
41.
go back to reference H. Craighead, C. James, A. Turner, Chemical and topographical patterning for directed cell attachment. Curr. Opin. Solid State Mater. Sci. 5(2), 177–184 (2001)ADSCrossRef H. Craighead, C. James, A. Turner, Chemical and topographical patterning for directed cell attachment. Curr. Opin. Solid State Mater. Sci. 5(2), 177–184 (2001)ADSCrossRef
42.
go back to reference A. Hai, J. Shappir, M.E. Spira, Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104(1), 559–568 (2010)CrossRef A. Hai, J. Shappir, M.E. Spira, Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104(1), 559–568 (2010)CrossRef
43.
go back to reference F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)ADSCrossRef F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)ADSCrossRef
44.
go back to reference T.-S. Pui, A. Agarwal, F. Ye, N. Balasubramanian, P. Chen, CMOS-compatible nanowire sensor arrays for detection of cellular bioelectricity. Small 5(2), 208–212 (2009)CrossRef T.-S. Pui, A. Agarwal, F. Ye, N. Balasubramanian, P. Chen, CMOS-compatible nanowire sensor arrays for detection of cellular bioelectricity. Small 5(2), 208–212 (2009)CrossRef
45.
go back to reference T. Cohen-Karni, B.P. Timko, L.E. Weiss, C.M. Lieber, Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. USA 106(18), 7309–7313 (2009)ADSCrossRef T. Cohen-Karni, B.P. Timko, L.E. Weiss, C.M. Lieber, Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. USA 106(18), 7309–7313 (2009)ADSCrossRef
46.
go back to reference B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)ADSCrossRef B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)ADSCrossRef
47.
go back to reference Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, V.N. Murthy, C.M. Lieber, Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 107(5), 1882–1887 (2010)ADSCrossRef Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, V.N. Murthy, C.M. Lieber, Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 107(5), 1882–1887 (2010)ADSCrossRef
48.
go back to reference J.F. Eschermann, R. Stockmann, M. Hueske, X.T. Vu, S. Ingebrandt, A. Offenhäusser, Action potentials of HL-1 cells recorded with silicon nanowire transistors. Appl. Phys. Lett. 95(8), 083703 (2009)ADSCrossRef J.F. Eschermann, R. Stockmann, M. Hueske, X.T. Vu, S. Ingebrandt, A. Offenhäusser, Action potentials of HL-1 cells recorded with silicon nanowire transistors. Appl. Phys. Lett. 95(8), 083703 (2009)ADSCrossRef
49.
go back to reference T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)ADSCrossRef T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)ADSCrossRef
50.
go back to reference M. Dankerl, S. Eick, B. Hofmann, M. Hauf, S. Ingebrandt, A. Offenhäusser, M. Stutzmann, J.A. Garrido, Diamond transistor array for extracellular recording from electrogenic cells. Adv. Funct. Mater. 19(18), 2915–2923 (2009)CrossRef M. Dankerl, S. Eick, B. Hofmann, M. Hauf, S. Ingebrandt, A. Offenhäusser, M. Stutzmann, J.A. Garrido, Diamond transistor array for extracellular recording from electrogenic cells. Adv. Funct. Mater. 19(18), 2915–2923 (2009)CrossRef
51.
go back to reference C. Van Renterghem, G. Romey, M. Lazdunski, Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels. Proc. Natl. Acad. Sci. USA 85(23), 9365–9369 (1988)ADSCrossRef C. Van Renterghem, G. Romey, M. Lazdunski, Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels. Proc. Natl. Acad. Sci. USA 85(23), 9365–9369 (1988)ADSCrossRef
52.
go back to reference L.I. Brueggemann, C.J. Moran, J.A. Barakat, J.Z. Yeh, L.L. Cribbs, K.L. Byron, Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292(3), H1352–H1363 (2007)CrossRef L.I. Brueggemann, C.J. Moran, J.A. Barakat, J.Z. Yeh, L.L. Cribbs, K.L. Byron, Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292(3), H1352–H1363 (2007)CrossRef
53.
go back to reference E. Chorev, J. Epsztein, A.R. Houweling, A.K. Lee, M. Brecht, Electrophysiological recordings from behaving animals—going beyond spikes. Curr. Opin. Neurobiol. 19(5), 513–519 (2009)CrossRef E. Chorev, J. Epsztein, A.R. Houweling, A.K. Lee, M. Brecht, Electrophysiological recordings from behaving animals—going beyond spikes. Curr. Opin. Neurobiol. 19(5), 513–519 (2009)CrossRef
54.
go back to reference A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside a nerve fibre. Nature 144(3651), 710–711 (1939)ADSCrossRef A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside a nerve fibre. Nature 144(3651), 710–711 (1939)ADSCrossRef
55.
go back to reference A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Wiley, Chichester, 2003) A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Wiley, Chichester, 2003)
56.
go back to reference B. Tian, C.M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem. 83(12), 2153 (2011)CrossRef B. Tian, C.M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem. 83(12), 2153 (2011)CrossRef
57.
go back to reference B. Tian, C.M. Lieber, Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013)CrossRef B. Tian, C.M. Lieber, Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013)CrossRef
58.
go back to reference X. Duan, T.-M. Fu, J. Liu, C.M. Lieber, Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8(4), 351–373 (2013)CrossRef X. Duan, T.-M. Fu, J. Liu, C.M. Lieber, Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8(4), 351–373 (2013)CrossRef
59.
go back to reference A. Hai, A. Dormann, J. Shappir, S. Yitzchaik, C. Bartic, G. Borghs, J. Langedijk, M.E. Spira, Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface 6, 1153–1165 (2009)CrossRef A. Hai, A. Dormann, J. Shappir, S. Yitzchaik, C. Bartic, G. Borghs, J. Langedijk, M.E. Spira, Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface 6, 1153–1165 (2009)CrossRef
60.
go back to reference A. Hai, D. Kamber, G. Malkinson, H. Erez, N. Mazurski, J. Shappir, M.E. Spira, Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J. Neural Eng. 6(6), 066009 (2009)ADSCrossRef A. Hai, D. Kamber, G. Malkinson, H. Erez, N. Mazurski, J. Shappir, M.E. Spira, Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J. Neural Eng. 6(6), 066009 (2009)ADSCrossRef
61.
go back to reference A. Hai, J. Shappir, M.E. Spira, In-cell recordings by extracellular microelectrodes. Nat. Methods 7(3), 200–202 (2010)CrossRef A. Hai, J. Shappir, M.E. Spira, In-cell recordings by extracellular microelectrodes. Nat. Methods 7(3), 200–202 (2010)CrossRef
62.
go back to reference F. Santoro, J. Schnitker, G. Panaitov, A. Offenhäusser, On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. Nano Lett. 13(11), 5379–5384 (2013)ADSCrossRef F. Santoro, J. Schnitker, G. Panaitov, A. Offenhäusser, On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. Nano Lett. 13(11), 5379–5384 (2013)ADSCrossRef
63.
go back to reference B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)ADSCrossRef B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)ADSCrossRef
64.
go back to reference L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)ADSCrossRef L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)ADSCrossRef
65.
go back to reference Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)ADSCrossRef Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)ADSCrossRef
66.
go back to reference X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang, C.M. Lieber, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7(3), 174–179 (2012)ADSCrossRef X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang, C.M. Lieber, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7(3), 174–179 (2012)ADSCrossRef
67.
go back to reference R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, Q. Qing, C.M. Lieber, Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12(6), 3329–3333 (2012)ADSCrossRef R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, Q. Qing, C.M. Lieber, Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12(6), 3329–3333 (2012)ADSCrossRef
68.
go back to reference Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai, C.M. Lieber, Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014)ADSCrossRef Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai, C.M. Lieber, Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014)ADSCrossRef
69.
go back to reference T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie, Z. Cheng, C.M. Lieber, Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. USA 111(4), 1259–1264 (2014)ADSCrossRef T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie, Z. Cheng, C.M. Lieber, Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. USA 111(4), 1259–1264 (2014)ADSCrossRef
70.
go back to reference J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner, H. Park, Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7(3), 180–184 (2012)ADSCrossRef J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner, H. Park, Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7(3), 180–184 (2012)ADSCrossRef
71.
go back to reference C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7(3), 185–190 (2012)ADSCrossRef C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7(3), 185–190 (2012)ADSCrossRef
72.
go back to reference B.D. Almquist, N.A. Melosh, Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl. Acad. Sci. USA 107(13), 5815–5820 (2010)ADSCrossRef B.D. Almquist, N.A. Melosh, Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl. Acad. Sci. USA 107(13), 5815–5820 (2010)ADSCrossRef
73.
go back to reference B.D. Almquist, N.A. Melosh, Molecular structure influences the stability of membrane penetrating biointerfaces. Nano Lett. 11(5), 2066–2070 (2011)ADSCrossRef B.D. Almquist, N.A. Melosh, Molecular structure influences the stability of membrane penetrating biointerfaces. Nano Lett. 11(5), 2066–2070 (2011)ADSCrossRef
74.
go back to reference B.D. Almquist, P. Verma, W. Cai, N.A. Melosh, Nanoscale patterning controls inorganic–membrane interface structure. Nanoscale 3(2), 391–400 (2011)ADSCrossRef B.D. Almquist, P. Verma, W. Cai, N.A. Melosh, Nanoscale patterning controls inorganic–membrane interface structure. Nanoscale 3(2), 391–400 (2011)ADSCrossRef
75.
go back to reference X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma, N.A. Melosh, Mechanical model of vertical nanowire cell penetration. Nano Lett. 13(12), 6002–6008 (2013)ADSCrossRef X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma, N.A. Melosh, Mechanical model of vertical nanowire cell penetration. Nano Lett. 13(12), 6002–6008 (2013)ADSCrossRef
76.
go back to reference Z.C. Lin, C. Xie, Y. Osakada, Y. Cui, B. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)ADS Z.C. Lin, C. Xie, Y. Osakada, Y. Cui, B. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)ADS
77.
go back to reference Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)CrossRef Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)CrossRef
78.
go back to reference Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, B. Morrison III, Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 26(7), 1135–1145 (2009)CrossRef Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, B. Morrison III, Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 26(7), 1135–1145 (2009)CrossRef
79.
go back to reference S.P. Lacour, S. Benmerah, E. Tarte, J. FitzGerald, J. Serra, S. McMahon, J. Fawcett, O. Graudejus, Z. Yu, B. Morrison III, Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48(10), 945–954 (2010)CrossRef S.P. Lacour, S. Benmerah, E. Tarte, J. FitzGerald, J. Serra, S. McMahon, J. Fawcett, O. Graudejus, Z. Yu, B. Morrison III, Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48(10), 945–954 (2010)CrossRef
80.
go back to reference Y.-C. Chen, H.-L. Hsu, Y.-T. Lee, H.-C. Su, S.-J. Yen, C.-H. Chen, W.-L. Hsu, T.-R. Yew, S.-R. Yeh, D.-J. Yao, An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. J. Neural Eng. 8(3), 034001 (2011)ADSCrossRef Y.-C. Chen, H.-L. Hsu, Y.-T. Lee, H.-C. Su, S.-J. Yen, C.-H. Chen, W.-L. Hsu, T.-R. Yew, S.-R. Yeh, D.-J. Yao, An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. J. Neural Eng. 8(3), 034001 (2011)ADSCrossRef
81.
go back to reference B.P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, C.M. Lieber, Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9(2), 914–918 (2009)ADSCrossRef B.P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, C.M. Lieber, Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9(2), 914–918 (2009)ADSCrossRef
82.
go back to reference T. Dvir, B.P. Timko, D.S. Kohane, R. Langer, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6(1), 13–22 (2011)ADSCrossRef T. Dvir, B.P. Timko, D.S. Kohane, R. Langer, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6(1), 13–22 (2011)ADSCrossRef
83.
go back to reference R.F. Fakhrullin, A.I. Zamaleeva, R.T. Minullina, S.A. Konnova, V.N. Paunov, Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem. Soc. Rev. 41(11), 4189–4206 (2012)CrossRef R.F. Fakhrullin, A.I. Zamaleeva, R.T. Minullina, S.A. Konnova, V.N. Paunov, Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem. Soc. Rev. 41(11), 4189–4206 (2012)CrossRef
84.
go back to reference X. Duan, C.M. Lieber, Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues. Chem. Asian J. 8(10), 2304–2314 (2013)CrossRef X. Duan, C.M. Lieber, Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues. Chem. Asian J. 8(10), 2304–2314 (2013)CrossRef
85.
go back to reference B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane, C.M. Lieber, Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)ADSCrossRef B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane, C.M. Lieber, Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)ADSCrossRef
86.
go back to reference J. Liu, C. Xie, X. Dai, L. Jin, W. Zhou, C.M. Lieber, Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 110(17), 6694–6699 (2013)ADSCrossRef J. Liu, C. Xie, X. Dai, L. Jin, W. Zhou, C.M. Lieber, Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 110(17), 6694–6699 (2013)ADSCrossRef
87.
go back to reference V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)CrossRef V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)CrossRef
88.
go back to reference J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)CrossRef J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)CrossRef
89.
go back to reference M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)CrossRef M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)CrossRef
90.
go back to reference T.D.Y. Kozai, D.R. Kipke, Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods 184(2), 199–205 (2009)CrossRef T.D.Y. Kozai, D.R. Kipke, Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods 184(2), 199–205 (2009)CrossRef
91.
go back to reference R. Biran, D.C. Martin, P.A. Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)CrossRef R. Biran, D.C. Martin, P.A. Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)CrossRef
92.
go back to reference J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015)ADSCrossRef J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015)ADSCrossRef
93.
go back to reference G. Hong, T.-M. Fu, T. Zhou, T.G. Schuhmann, J. Huang, C.M. Lieber, Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett. 15(10), 6979–6984 (2015)ADSCrossRef G. Hong, T.-M. Fu, T. Zhou, T.G. Schuhmann, J. Huang, C.M. Lieber, Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett. 15(10), 6979–6984 (2015)ADSCrossRef
94.
go back to reference C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou, C.M. Lieber, Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14(12), 1286–1292 (2015)ADSCrossRef C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou, C.M. Lieber, Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14(12), 1286–1292 (2015)ADSCrossRef
Metadata
Title
Nanowire Interfaces to Cells and Tissue
Authors
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_11

Premium Partners