Navigate the Unknown: Implications of Grid-Cells “Mental Travel” in Vicarious Trial and Error | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2016 | OriginalPaper | Chapter

Navigate the Unknown: Implications of Grid-Cells “Mental Travel” in Vicarious Trial and Error

Authors : Diogo Santos-Pata, Riccardo Zucca, Paul F. M. J. Verschure

Published in: Biomimetic and Biohybrid Systems

Publisher: Springer International Publishing

share
SHARE

Abstract

Rodents are able to navigate within dynamic environments by constantly adapting to their surroundings. Hippocampal place-cells encode the animals current location and fire in sequences during path planning events. Place-cells receive excitatory inputs from grid-cells whose metric system constitute a powerful mechanism for vector based navigation for both known and unexplored locations. However, neither the purpose or the behavioral consequences of such mechanism are fully understood. During early exploration of a maze with multiple discrimination points, rodents typically manifest a conflict-like behavior consisting of alternating head movements from one arm of the maze to the other be- fore making a choice, a behavior which is called vicarious trial and error (VTE). Here, we suggest that VTE is modulated by the learning process between spatial- and reward-tuned neuronal populations. We present a hippocampal model of place- and grid-cells for both space representation and mental travel that we used to control a robot solving a foraging task. We show that place-cells are able to represent the agents current location, whereas grid-cells encode the robots movement in space and project their activity over unexplored paths. Our results suggest a tight interaction between spatial and reward related neuronal activity in defining VTE behavior.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Hafting, T., et al.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005) CrossRef Hafting, T., et al.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005) CrossRef
2.
go back to reference Pata, D.S., Escuredo, A., Lallée, S., Verschure, P.F.M.J.: Hippocampal based model reveals the distinct roles of dentate gyrus and CA3 during robotic spatial navigation. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 273–283. Springer, Heidelberg (2014) Pata, D.S., Escuredo, A., Lallée, S., Verschure, P.F.M.J.: Hippocampal based model reveals the distinct roles of dentate gyrus and CA3 during robotic spatial navigation. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 273–283. Springer, Heidelberg (2014)
3.
go back to reference Maffei, G., Santos-Pata, D., Marcos, E., Sanchez-Fibla, M., Verschure, P.F.: An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X. Neural Netw. 72, 88–108 (2015) CrossRef Maffei, G., Santos-Pata, D., Marcos, E., Sanchez-Fibla, M., Verschure, P.F.: An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X. Neural Netw. 72, 88–108 (2015) CrossRef
4.
go back to reference Domnisoru, C., Kinkhabwala, A.A., Tank, D.W.: Membrane potential dynamics of grid cells. Nature 495(7440), 199–204 (2013) CrossRef Domnisoru, C., Kinkhabwala, A.A., Tank, D.W.: Membrane potential dynamics of grid cells. Nature 495(7440), 199–204 (2013) CrossRef
5.
go back to reference Johnson, A., David Redish, A.: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27(45), 12176–12189 (2007) CrossRef Johnson, A., David Redish, A.: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27(45), 12176–12189 (2007) CrossRef
6.
go back to reference Guanella, A., Kiper, D., Verschure, P.: A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17(04), 231–240 (2007) CrossRef Guanella, A., Kiper, D., Verschure, P.: A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17(04), 231–240 (2007) CrossRef
7.
go back to reference Brun, V.H., et al.: Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18(12), 1200–1212 (2008) MathSciNetCrossRef Brun, V.H., et al.: Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18(12), 1200–1212 (2008) MathSciNetCrossRef
8.
go back to reference Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55(4), 189 (1948) CrossRef Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55(4), 189 (1948) CrossRef
9.
go back to reference Redish, A.D.: Vicarious trial and error. Nat. Rev. Neurosci. 17(3), 147–159 (2016) CrossRef Redish, A.D.: Vicarious trial and error. Nat. Rev. Neurosci. 17(3), 147–159 (2016) CrossRef
10.
go back to reference Sanders, H., et al.: Grid cells and place cells: an integrated view of their navigational and memory function. Trends Neurosci. 38(12), 763–775 (2015) CrossRef Sanders, H., et al.: Grid cells and place cells: an integrated view of their navigational and memory function. Trends Neurosci. 38(12), 763–775 (2015) CrossRef
11.
go back to reference Bush, D., et al.: Using grid cells for navigation. Neuron 87(3), 507–520 (2015) CrossRef Bush, D., et al.: Using grid cells for navigation. Neuron 87(3), 507–520 (2015) CrossRef
12.
go back to reference van der Meer, M.A., et al.: Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67(1), 25–32 (2010) CrossRef van der Meer, M.A., et al.: Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67(1), 25–32 (2010) CrossRef
13.
go back to reference Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, New York (2005) Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, New York (2005)
14.
go back to reference de Almeida, L., Idiart, M., Lisman, J.E.: The input output transformation of the hippocampal granule cells: from grid cells to place fields. J. Neurosci. 29(23), 7504–7512 (2009) CrossRef de Almeida, L., Idiart, M., Lisman, J.E.: The input output transformation of the hippocampal granule cells: from grid cells to place fields. J. Neurosci. 29(23), 7504–7512 (2009) CrossRef
15.
go back to reference O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971) CrossRef O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971) CrossRef
16.
go back to reference Yoon, K.J., et al.: Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16(8), 1077–1084 (2013) CrossRef Yoon, K.J., et al.: Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16(8), 1077–1084 (2013) CrossRef
17.
go back to reference Pfeiffer, B.E., Foster, D.J.: Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497(7447), 74–79 (2013) CrossRef Pfeiffer, B.E., Foster, D.J.: Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497(7447), 74–79 (2013) CrossRef
18.
go back to reference Taube, J.S., Muller, R.U., Ranck, J.B.: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10(2), 420–435 (1990) Taube, J.S., Muller, R.U., Ranck, J.B.: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10(2), 420–435 (1990)
Metadata
Title
Navigate the Unknown: Implications of Grid-Cells “Mental Travel” in Vicarious Trial and Error
Authors
Diogo Santos-Pata
Riccardo Zucca
Paul F. M. J. Verschure
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-42417-0_23

Premium Partner