Skip to main content
Top

13-02-2025 | Review

Navigating complexity: a comprehensive review of heterogeneous information networks and embedding techniques

Authors: Khouloud Ammar, Wissem Inoubli, Sami Zghal, Engelbert Mephu Nguifo

Published in: Knowledge and Information Systems

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The adoption of heterogeneous information networks (HINs) has gained popularity as a means of modeling complex real-world systems with diverse interacting components. Despite the acknowledged advantages of HIN, a considerable number of current studies tend to treat these networks as homogeneous, neglecting the distinctions between different types of components and connections. Recently, there has been a growing recognition among researchers of the importance of treating interconnected data with multiple types as a HIN. They have developed methods to embed such data into a lower-dimensional space while preserving the diverse structures and meanings within the network. These HIN embedding methods offer versatile applications, including fraud detection, system recommendation, disease prediction, etc., leveraging the rich semantics inherent in object types and links within the network. Although HIN provides more structural and semantic information compared to homogeneous networks, it also poses challenges for data mining. In this paper, we present a comprehensive review of the approaches, techniques, and applications employed in HIN, emphasizing the diverse methodologies identified in existing literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. WWW ’15, pp 1067–1077. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://doi.org/10.1145/2736277.2741093 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. WWW ’15, pp 1067–1077. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://​doi.​org/​10.​1145/​2736277.​2741093
5.
go back to reference Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks
6.
go back to reference Yang C, Zhang J, Wang H, Li S, Kim M, Walker M, Xiao Y, Han J (2020) Relation learning on social networks with multi-modal graph edge variational autoencoders. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp 699–707 Yang C, Zhang J, Wang H, Li S, Kim M, Walker M, Xiao Y, Han J (2020) Relation learning on social networks with multi-modal graph edge variational autoencoders. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp 699–707
7.
go back to reference Wei X, Xu L, Cao B, Yu PS (2017) Cross view link prediction by learning noise-resilient representation consensus. In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17, pp. 1611–1619. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://doi.org/10.1145/3038912.3052575 Wei X, Xu L, Cao B, Yu PS (2017) Cross view link prediction by learning noise-resilient representation consensus. In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17, pp. 1611–1619. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://​doi.​org/​10.​1145/​3038912.​3052575
8.
go back to reference Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp 2014–2023. PMLR Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp 2014–2023. PMLR
9.
go back to reference Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp 891–900 Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp 891–900
11.
go back to reference Liaw A (2002) Classification and regression by randomforest. R news Liaw A (2002) Classification and regression by randomforest. R news
12.
go back to reference Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp 785–794 Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp 785–794
13.
go back to reference Seo Y, Defferrard M, Vandergheynst P, Bresson X (2018) Structured sequence modeling with graph convolutional recurrent networks. In: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25. Springer, p 362–373 Seo Y, Defferrard M, Vandergheynst P, Bresson X (2018) Structured sequence modeling with graph convolutional recurrent networks. In: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25. Springer, p 362–373
14.
go back to reference He J, Li M, Zhang H-J, Tong H, Zhang C (2004) Manifold-ranking based image retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia. MULTIMEDIA ’04, pp. 9–16. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1027527.1027531 He J, Li M, Zhang H-J, Tong H, Zhang C (2004) Manifold-ranking based image retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia. MULTIMEDIA ’04, pp. 9–16. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​1027527.​1027531
16.
go back to reference Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry
17.
go back to reference Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. Advances in neural information processing systems 26 Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. Advances in neural information processing systems 26
18.
go back to reference Yang C, Bai L, Zhang C, Yuan Q, Han J (2017) Bridging collaborative filtering and semi-supervised learning: A neural approach for poi recommendation. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’17, pp 1245–1254. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3097983.3098094 Yang C, Bai L, Zhang C, Yuan Q, Han J (2017) Bridging collaborative filtering and semi-supervised learning: A neural approach for poi recommendation. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’17, pp 1245–1254. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​3097983.​3098094
19.
go back to reference Wei X, Xu L, Cao B, Yu PS (2017) Cross view link prediction by learning noise-resilient representation consensus. In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17, pp 1611–1619. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://doi.org/10.1145/3038912.3052575 Wei X, Xu L, Cao B, Yu PS (2017) Cross view link prediction by learning noise-resilient representation consensus. In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17, pp 1611–1619. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://​doi.​org/​10.​1145/​3038912.​3052575
21.
go back to reference Zhang J-D, Chow C-Y (2015) Geosoca: exploiting geographical, social and categorical correlations for point-of-interest recommendations. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’15, pp 443–452. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2766462.2767711 Zhang J-D, Chow C-Y (2015) Geosoca: exploiting geographical, social and categorical correlations for point-of-interest recommendations. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’15, pp 443–452. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​2766462.​2767711
22.
go back to reference Yang C, Hoang DH, Mikolov T, Han J (2019) Place deduplication with embeddings Yang C, Hoang DH, Mikolov T, Han J (2019) Place deduplication with embeddings
23.
go back to reference Dos Santos L, Piwowarski B, Gallinari P (2016) Multilabel classification on heterogeneous graphs with gaussian embeddings. In: Frasconi P, Landwehr N, Manco G, Vreeken J (eds) Machine learning and knowledge discovery in databases. Springer, Cham, pp 606–622CrossRefMATH Dos Santos L, Piwowarski B, Gallinari P (2016) Multilabel classification on heterogeneous graphs with gaussian embeddings. In: Frasconi P, Landwehr N, Manco G, Vreeken J (eds) Machine learning and knowledge discovery in databases. Springer, Cham, pp 606–622CrossRefMATH
24.
go back to reference Eswaran D, Günnemann S, Faloutsos C, Makhija D, Kumar M (2017) Zoobp: belief propagation for heterogeneous networks. Proc VLDB Endow 10(5):625–636CrossRef Eswaran D, Günnemann S, Faloutsos C, Makhija D, Kumar M (2017) Zoobp: belief propagation for heterogeneous networks. Proc VLDB Endow 10(5):625–636CrossRef
25.
go back to reference Chen T, Sun Y (2016) Task-guided and path-augmented heterogeneous network embedding for author identification Chen T, Sun Y (2016) Task-guided and path-augmented heterogeneous network embedding for author identification
26.
go back to reference Geng X, Zhang H, Bian J, Chua T-S (2015) Learning image and user features for recommendation in social networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 4274–4282 Geng X, Zhang H, Bian J, Chua T-S (2015) Learning image and user features for recommendation in social networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 4274–4282
27.
go back to reference Fan S, Zhu J, Han X, Shi C, Hu L, Ma B, Li Y (2019) Metapath-guided heterogeneous graph neural network for intent recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery And; Data Mining. KDD ’19, pp. 2478–2486. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3292500.3330673 Fan S, Zhu J, Han X, Shi C, Hu L, Ma B, Li Y (2019) Metapath-guided heterogeneous graph neural network for intent recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery And; Data Mining. KDD ’19, pp. 2478–2486. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​3292500.​3330673
29.
go back to reference Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1105–1114 Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1105–1114
30.
go back to reference Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRefMATH Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRefMATH
31.
go back to reference Cai H, Zheng VW, Chang KC-C (2018) A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans Knowl Data Eng 30(9):1616–1637CrossRefMATH Cai H, Zheng VW, Chang KC-C (2018) A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans Knowl Data Eng 30(9):1616–1637CrossRefMATH
33.
go back to reference Yang C, Xiao Y, Zhang Y, Sun Y, Han J (2020) Heterogeneous network representation learning: a unified framework with survey and benchmark. TKDE Yang C, Xiao Y, Zhang Y, Sun Y, Han J (2020) Heterogeneous network representation learning: a unified framework with survey and benchmark. TKDE
34.
go back to reference Keele S et al (2007) Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, ver. 2.3 ebse technical report. ebse Keele S et al (2007) Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, ver. 2.3 ebse technical report. ebse
35.
go back to reference Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 135–144 Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 135–144
36.
go back to reference Fu T-y, Lee W-C, Lei Z (2017) Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 1797–1806 Fu T-y, Lee W-C, Lei Z (2017) Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 1797–1806
37.
go back to reference Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26
38.
go back to reference He Y, Song Y, Li J, Ji C, Peng J, Peng H (2019) Hetespaceywalk: a heterogeneous spacey random walk for heterogeneous information network embedding. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 639–648 He Y, Song Y, Li J, Ji C, Peng J, Peng H (2019) Hetespaceywalk: a heterogeneous spacey random walk for heterogeneous information network embedding. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 639–648
39.
go back to reference Lee S, Park C, Yu H (2019) Bhin2vec: Balancing the type of relation in heterogeneous information network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. CIKM ’19, pp 619–628. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3357384.3357893 Lee S, Park C, Yu H (2019) Bhin2vec: Balancing the type of relation in heterogeneous information network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. CIKM ’19, pp 619–628. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​3357384.​3357893
40.
go back to reference Wang X, Zhang Y, Shi C (2019) Hyperbolic heterogeneous information network embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 5337–5344 Wang X, Zhang Y, Shi C (2019) Hyperbolic heterogeneous information network embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 5337–5344
41.
go back to reference Hussein R, Yang D, Cudré-Mauroux P (2018) Are meta-paths necessary? Revisiting heterogeneous graph embeddings. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 437–446 Hussein R, Yang D, Cudré-Mauroux P (2018) Are meta-paths necessary? Revisiting heterogeneous graph embeddings. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 437–446
42.
go back to reference Basher MA, Rahman A, Hallam SJ (2021) Leveraging heterogeneous network embedding for metabolic pathway prediction. Bioinformatics 37(6):822–829CrossRefMATH Basher MA, Rahman A, Hallam SJ (2021) Leveraging heterogeneous network embedding for metabolic pathway prediction. Bioinformatics 37(6):822–829CrossRefMATH
43.
go back to reference Li Z, Zheng W, Lin X, Zhao Z, Wang Z, Wang Y, Jian X, Chen L, Yan Q, Mao T (2020) Transn: heterogeneous network representation learning by translating node embeddings. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp 589–600. IEEE Li Z, Zheng W, Lin X, Zhao Z, Wang Z, Wang Y, Jian X, Chen L, Yan Q, Mao T (2020) Transn: heterogeneous network representation learning by translating node embeddings. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp 589–600. IEEE
45.
go back to reference Zhang H, Qiu L, Yi L, Song Y (2018) Scalable multiplex network embedding. IJCAI 18:3082–3088MATH Zhang H, Qiu L, Yi L, Song Y (2018) Scalable multiplex network embedding. IJCAI 18:3082–3088MATH
46.
go back to reference Shang J, Qu M, Liu J, Kaplan LM, Han J, Peng J (2016) Meta-path guided embedding for similarity search in large-scale heterogeneous information networks Shang J, Qu M, Liu J, Kaplan LM, Han J, Peng J (2016) Meta-path guided embedding for similarity search in large-scale heterogeneous information networks
47.
go back to reference Sun Y, Han J, Yan X, Yu PS, Wu T (2011) Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc VLDB Endow 4(11):992–1003CrossRefMATH Sun Y, Han J, Yan X, Yu PS, Wu T (2011) Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc VLDB Endow 4(11):992–1003CrossRefMATH
48.
go back to reference Chen H, Yin H, Wang W, Wang H, Nguyen QVH, Li X (2018) Pme: Projected metric embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’18, pp 1177–1186. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3219819.3219986 Chen H, Yin H, Wang W, Wang H, Nguyen QVH, Li X (2018) Pme: Projected metric embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’18, pp 1177–1186. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​3219819.​3219986
49.
go back to reference Tang J, Qu M, Mei Q (2015) Pte: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1165–1174 Tang J, Qu M, Mei Q (2015) Pte: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1165–1174
50.
go back to reference Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417CrossRefMATH Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417CrossRefMATH
51.
go back to reference Zhang C, Swami A, Chawla NV (2019) Shne: Representation learning for semantic-associated heterogeneous networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. WSDM ’19, pp 690–698. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3289600.3291001 Zhang C, Swami A, Chawla NV (2019) Shne: Representation learning for semantic-associated heterogeneous networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. WSDM ’19, pp 690–698. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​3289600.​3291001
52.
go back to reference Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24MathSciNetCrossRefMATH Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24MathSciNetCrossRefMATH
53.
go back to reference Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: The World Wide Web Conference, pp 2022–2032 Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: The World Wide Web Conference, pp 2022–2032
55.
go back to reference Schlichtkrull M, Kipf TN, Bloem P, Berg R, Titov I, Welling M (2017) Modeling relational data with graph convolutional networks Schlichtkrull M, Kipf TN, Bloem P, Berg R, Titov I, Welling M (2017) Modeling relational data with graph convolutional networks
56.
go back to reference Yang C, Pal A, Zhai A, Pancha N, Han J, Rosenberg C, Leskovec J (2020) Multisage: empowering gcn with contextualized multi-embeddings on web-scale multipartite networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 2434–2443 Yang C, Pal A, Zhai A, Pancha N, Han J, Rosenberg C, Leskovec J (2020) Multisage: empowering gcn with contextualized multi-embeddings on web-scale multipartite networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 2434–2443
57.
go back to reference Zhang C, Song D, Huang C, Swami A, Chawla NV (2019) Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 793–803 Zhang C, Song D, Huang C, Swami A, Chawla NV (2019) Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 793–803
58.
go back to reference Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. Advances in neural information processing systems 32 Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. Advances in neural information processing systems 32
59.
go back to reference Hong H, Lin Y, Yang X, Li Z, Fu K, Wang Z, Qie X, Ye J (2020) Heteta: heterogeneous graph attention network. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 2444–2454 Hong H, Lin Y, Yang X, Li Z, Fu K, Wang Z, Qie X, Ye J (2020) Heteta: heterogeneous graph attention network. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 2444–2454
61.
go back to reference Bian R, Koh YS, Dobbie G, Divoli A (2019) Network embedding and change modeling in dynamic heterogeneous networks. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 861–864 Bian R, Koh YS, Dobbie G, Divoli A (2019) Network embedding and change modeling in dynamic heterogeneous networks. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 861–864
62.
go back to reference Milani Fard A, Bagheri E, Wang K (2019) Relationship prediction in dynamic heterogeneous information networks. In: European Conference on Information Retrieval, pp 19–34. Springer Milani Fard A, Bagheri E, Wang K (2019) Relationship prediction in dynamic heterogeneous information networks. In: European Conference on Information Retrieval, pp 19–34. Springer
63.
go back to reference Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal rnn. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 282–298. Springer Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal rnn. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 282–298. Springer
64.
go back to reference Yang L, Xiao Z, Jiang W, Wei Y, Hu Y, Wang H (2020) Dynamic heterogeneous graph embedding using hierarchical attentions. In: European Conference on Information Retrieval, pp 425–432. Springer Yang L, Xiao Z, Jiang W, Wei Y, Hu Y, Wang H (2020) Dynamic heterogeneous graph embedding using hierarchical attentions. In: European Conference on Information Retrieval, pp 425–432. Springer
65.
go back to reference Li Q, Shang Y, Qiao X, Dai W (2020) Heterogeneous dynamic graph attention network. In: 2020 IEEE International Conference on Knowledge Graph (ICKG), pp 404–411. IEEE Li Q, Shang Y, Qiao X, Dai W (2020) Heterogeneous dynamic graph attention network. In: 2020 IEEE International Conference on Knowledge Graph (ICKG), pp 404–411. IEEE
66.
67.
go back to reference Yin Y, Ji L-X, Zhang J-P, Pei Y-L (2019) Dhne: network representation learning method for dynamic heterogeneous networks. IEEE Access 7:134782–134792CrossRef Yin Y, Ji L-X, Zhang J-P, Pei Y-L (2019) Dhne: network representation learning method for dynamic heterogeneous networks. IEEE Access 7:134782–134792CrossRef
68.
go back to reference Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. Advances in neural information processing systems 26 Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. Advances in neural information processing systems 26
71.
go back to reference Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (vol 1: Long Papers), pp 687–696 Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (vol 1: Long Papers), pp 687–696
73.
go back to reference Ammar K, Inoubli W, Zghal S, Borji A, Nguifo EM (2023) Trans-trip: translation-based embedding with triplets for heterogeneous graphs. Procedia Comput Sci 225:1104–1113CrossRef Ammar K, Inoubli W, Zghal S, Borji A, Nguifo EM (2023) Trans-trip: translation-based embedding with triplets for heterogeneous graphs. Procedia Comput Sci 225:1104–1113CrossRef
75.
go back to reference Yi B, Shen X, Liu H, Zhang Z, Zhang W, Liu S, Xiong N (2019) Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Trans Ind Inform 15(8):4591–4601CrossRefMATH Yi B, Shen X, Liu H, Zhang Z, Zhang W, Liu S, Xiong N (2019) Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Trans Ind Inform 15(8):4591–4601CrossRefMATH
77.
go back to reference Han X, Shi C, Wang S, Philip SY, Song L (2018) Aspect-level deep collaborative filtering via heterogeneous information networks. In: IJCAI, vol 18, pp 3393–3399 Han X, Shi C, Wang S, Philip SY, Song L (2018) Aspect-level deep collaborative filtering via heterogeneous information networks. In: IJCAI, vol 18, pp 3393–3399
79.
go back to reference Liu Z, Chen C, Yang X, Zhou J, Li X, Song L (2018) Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 2077–2085 Liu Z, Chen C, Yang X, Zhou J, Li X, Song L (2018) Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 2077–2085
82.
go back to reference Chen X, Xie D, Wang L, Zhao Q, You Z-H, Liu H (2018) Bnpmda: bipartite network projection for mirna-disease association prediction. Bioinformatics 34(18):3178–3186CrossRefMATH Chen X, Xie D, Wang L, Zhao Q, You Z-H, Liu H (2018) Bnpmda: bipartite network projection for mirna-disease association prediction. Bioinformatics 34(18):3178–3186CrossRefMATH
84.
go back to reference Zhang K, Bhattacharyya S, Ram S (2016) Large-scale network analysis for online social brand advertising. Mis Q 40(4):849–868CrossRefMATH Zhang K, Bhattacharyya S, Ram S (2016) Large-scale network analysis for online social brand advertising. Mis Q 40(4):849–868CrossRefMATH
86.
go back to reference Radicioni T, Saracco F, Pavan E, Squartini T (2021) Analysing twitter semantic networks: the case of 2018 Italian elections. Sci Rep 11(1):13207CrossRefMATH Radicioni T, Saracco F, Pavan E, Squartini T (2021) Analysing twitter semantic networks: the case of 2018 Italian elections. Sci Rep 11(1):13207CrossRefMATH
87.
go back to reference Corizzo R, Pio G, Barracchia EP, Pellicani A, Japkowicz N, Ceci M (2023) Huri: hybrid user risk identification in social networks. World Wide Web 26(5):3409–3439CrossRef Corizzo R, Pio G, Barracchia EP, Pellicani A, Japkowicz N, Ceci M (2023) Huri: hybrid user risk identification in social networks. World Wide Web 26(5):3409–3439CrossRef
89.
go back to reference Gallagher B, Tong H, Eliassi-Rad T, Faloutsos C (2008) Using ghost edges for classification in sparsely labeled networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 256–264 Gallagher B, Tong H, Eliassi-Rad T, Faloutsos C (2008) Using ghost edges for classification in sparsely labeled networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 256–264
90.
go back to reference Uzel VN, Eşsiz ES, Özel SA (2018) Using fuzzy sets for detecting cyber terrorism and extremism in the text. In: 2018 Innovations in Intelligent Systems and Applications Conference (ASYU), pp 1–4. IEEE Uzel VN, Eşsiz ES, Özel SA (2018) Using fuzzy sets for detecting cyber terrorism and extremism in the text. In: 2018 Innovations in Intelligent Systems and Applications Conference (ASYU), pp 1–4. IEEE
91.
go back to reference Zhang Y, Gao S, Pei J, Huang H (2022) Improving social network embedding via new second-order continuous graph neural networks. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp 2515–2523 Zhang Y, Gao S, Pei J, Huang H (2022) Improving social network embedding via new second-order continuous graph neural networks. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp 2515–2523
93.
go back to reference Pellicani A, Pio G, Redavid D, Ceci M (2023) Sairus: spatially-aware identification of risky users in social networks. Inf Fusion 92:435–449CrossRef Pellicani A, Pio G, Redavid D, Ceci M (2023) Sairus: spatially-aware identification of risky users in social networks. Inf Fusion 92:435–449CrossRef
94.
go back to reference Peng H, Li J, Song Y, Yang R, Ranjan R, Yu PS, He L (2021) Streaming social event detection and evolution discovery in heterogeneous information networks. ACM Trans Knowl Discov Data (TKDD) 15(5):1–33CrossRefMATH Peng H, Li J, Song Y, Yang R, Ranjan R, Yu PS, He L (2021) Streaming social event detection and evolution discovery in heterogeneous information networks. ACM Trans Knowl Discov Data (TKDD) 15(5):1–33CrossRefMATH
Metadata
Title
Navigating complexity: a comprehensive review of heterogeneous information networks and embedding techniques
Authors
Khouloud Ammar
Wissem Inoubli
Sami Zghal
Engelbert Mephu Nguifo
Publication date
13-02-2025
Publisher
Springer London
Published in
Knowledge and Information Systems
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-025-02357-x

Premium Partner