Skip to main content
Top

2020 | OriginalPaper | Chapter

10. Near-Field Energy Transfer

Author : Zhuomin M. Zhang

Published in: Nano/Microscale Heat Transfer

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Near-field effects can realize emerging technologies, such as superlens, subwavelength light source, polariton-assisted biosensors, and energy conversion devices. The control of thermal radiative properties by micro/nanoscale 1D, 2D, and 3D photonic structures has been extensively addressed in previous chapters. Because of the important applications to energy transport and conversion, this chapter focuses on near-field radiative heat transfer between objects in close vicinity. The phenomenon of photon tunneling and the principle of fluctuation–dissipation theorem will be presented, along with recent theoretical and experimental developments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference L. Novotny, The history of near-field optics. Prog. Opt. 50, 137–180 (2007) L. Novotny, The history of near-field optics. Prog. Opt. 50, 137–180 (2007)
2.
go back to reference L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge Univ. Press, Cambridge, UK, 2012) L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge Univ. Press, Cambridge, UK, 2012)
3.
go back to reference A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 13, 227–232 (1984) A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 13, 227–232 (1984)
4.
go back to reference D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984) D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984)
5.
go back to reference E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993); E. Betzig, J.K. Trautman, R. Wolfe et al., Near-field magneto-optics and high density storage. Appl. Phys. Lett. 61, 142–144 (1992); E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy and surface modification beyond the diffraction limit. Science 257, 189–195 (1992) E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993); E. Betzig, J.K. Trautman, R. Wolfe et al., Near-field magneto-optics and high density storage. Appl. Phys. Lett. 61, 142–144 (1992); E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy and surface modification beyond the diffraction limit. Science 257, 189–195 (1992)
6.
go back to reference B. Hecht, B. Sick, U.P. Wild, Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000) B. Hecht, B. Sick, U.P. Wild, Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000)
7.
go back to reference S. Kawata (ed.), Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001) S. Kawata (ed.), Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001)
8.
go back to reference J. Tominaga, D.P. Tsai (eds.), Optical Nanotechnologies – The Manipulation of Surface and Local Plasmons (Springer, Berlin, 2003) J. Tominaga, D.P. Tsai (eds.), Optical Nanotechnologies – The Manipulation of Surface and Local Plasmons (Springer, Berlin, 2003)
9.
go back to reference Y.F. Lu, B. Hu, Z.H. Mai, W.J. Wang, W.K. Chim, T.C. Chong, Laser-scanning probe microscope based nanoprocessing of electronics materials. Jpn. J. Appl. Phys. 40, 4395–4398 (2001) Y.F. Lu, B. Hu, Z.H. Mai, W.J. Wang, W.K. Chim, T.C. Chong, Laser-scanning probe microscope based nanoprocessing of electronics materials. Jpn. J. Appl. Phys. 40, 4395–4398 (2001)
10.
go back to reference A. Chimmalgi, G.P. Grigoropoulos, K. Komvopoulos, Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy. J. Appl. Phys. 97, 104319 (2005) A. Chimmalgi, G.P. Grigoropoulos, K. Komvopoulos, Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy. J. Appl. Phys. 97, 104319 (2005)
11.
go back to reference H. Mabuchi, A.C. Doherty, Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002) H. Mabuchi, A.C. Doherty, Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002)
12.
go back to reference K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003) K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)
13.
go back to reference L.A. Blanco, F.J.G. de Abajo, Spontaneous light emission in complex nanostructures. Phys. Rev. B 69, 205414 (2004) L.A. Blanco, F.J.G. de Abajo, Spontaneous light emission in complex nanostructures. Phys. Rev. B 69, 205414 (2004)
14.
go back to reference M. Planck, The Theory of Heat Radiation, Dover Publications, New York, 1959. [Reproduction of the Masius translation in 1914.] M. Planck, The Theory of Heat Radiation, Dover Publications, New York, 1959. [Reproduction of the Masius translation in 1914.]
15.
go back to reference H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988) H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988)
16.
go back to reference C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)
17.
go back to reference S. Basu, Z.M. Zhang, C.J. Fu, Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009) S. Basu, Z.M. Zhang, C.J. Fu, Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009)
18.
go back to reference X.L. Liu, L.P. Wang, Z.M. Zhang, Near-field thermal radiation: recent progress and outlook. Nanos. Micros. Thermophys. Eng. 19, 98–126 (2015) X.L. Liu, L.P. Wang, Z.M. Zhang, Near-field thermal radiation: recent progress and outlook. Nanos. Micros. Thermophys. Eng. 19, 98–126 (2015)
19.
go back to reference V. Fernández-Hurtado, A.I. Fernández-Domínguez, J. Feist, F.J. García-Vidal, J.C. Cuevas, Super-Planckian far-feld radiative heat transfer. Phys. Rev. B 97, 045408 (2018) V. Fernández-Hurtado, A.I. Fernández-Domínguez, J. Feist, F.J. García-Vidal, J.C. Cuevas, Super-Planckian far-feld radiative heat transfer. Phys. Rev. B 97, 045408 (2018)
20.
go back to reference D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M.M. Qazilbash, P. Reddy, E. Meyhofer, Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018) D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M.M. Qazilbash, P. Reddy, E. Meyhofer, Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018)
21.
go back to reference E. E. Hall, The penetration of totally reflected light into the rarer medium. Phys. Rev. (Ser. I) 15, 73–106 (1902) E. E. Hall, The penetration of totally reflected light into the rarer medium. Phys. Rev. (Ser. I) 15, 73–106 (1902)
22.
go back to reference E.G. Cravalho, C.L. Tien, R.P. Caren, Effect of small spacing on radiative transfer between two dielectrics. J. Heat Transfer 89, 351–358 (1967); C. L. Tien and G. R. Cunnington, Cryogenic insulation heat transfer. Adv. Heat Transfer 9, 349–417 (1973) E.G. Cravalho, C.L. Tien, R.P. Caren, Effect of small spacing on radiative transfer between two dielectrics. J. Heat Transfer 89, 351–358 (1967); C. L. Tien and G. R. Cunnington, Cryogenic insulation heat transfer. Adv. Heat Transfer 9, 349–417 (1973)
23.
go back to reference M.D. Whale, E.G. Cravalho, Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Trans. Energy Conversion 17, 130–142 (2002) M.D. Whale, E.G. Cravalho, Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Trans. Energy Conversion 17, 130–142 (2002)
24.
go back to reference J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001); ibid, Enhanced radiative heat transfer at nanometric distance. Microscale Thermophys. Eng. 6, 209–222 (2002) J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001); ibid, Enhanced radiative heat transfer at nanometric distance. Microscale Thermophys. Eng. 6, 209–222 (2002)
25.
go back to reference C.J. Fu, Z.M. Zhang, Nanoscale radiation heat transfer for silicon at different doping levels. Intl. J. Heat Mass Transfer 49, 1703–1718 (2006)MATH C.J. Fu, Z.M. Zhang, Nanoscale radiation heat transfer for silicon at different doping levels. Intl. J. Heat Mass Transfer 49, 1703–1718 (2006)MATH
26.
go back to reference R.Y. Chiao, A.M. Steinberg, Tunneling times and superluminality. Prog. Opt. 37, 345–405 (1997) R.Y. Chiao, A.M. Steinberg, Tunneling times and superluminality. Prog. Opt. 37, 345–405 (1997)
27.
go back to reference P. Yeh, Resonant tunneling of electromagnetic radiation in superlattice structures. J. Opt. Soc. Am. A 2, 568–571 (1985); P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988) P. Yeh, Resonant tunneling of electromagnetic radiation in superlattice structures. J. Opt. Soc. Am. A 2, 568–571 (1985); P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)
28.
go back to reference Z.M. Zhang, C J. Fu, Unusual photon tunneling in the presence of a layer with a negative refractive index. Appl. Phys. Lett. 80, 1097–1099 (2002); C.J. Fu, Z.M. Zhang, Transmission enhancement using a negative-refraction layer. Microscale Thermophys. Eng. 7, 221–234 (2003) Z.M. Zhang, C J. Fu, Unusual photon tunneling in the presence of a layer with a negative refractive index. Appl. Phys. Lett. 80, 1097–1099 (2002); C.J. Fu, Z.M. Zhang, Transmission enhancement using a negative-refraction layer. Microscale Thermophys. Eng. 7, 221–234 (2003)
29.
go back to reference C.J. Fu, Z.M. Zhang, D.B. Tanner, Energy transmission by photon tunneling in multilayer structures including negative index materials. J. Heat Transfer 127, 1046–1052 (2005) C.J. Fu, Z.M. Zhang, D.B. Tanner, Energy transmission by photon tunneling in multilayer structures including negative index materials. J. Heat Transfer 127, 1046–1052 (2005)
30.
go back to reference J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000) J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)
31.
go back to reference D.O.S. Melville, R.J. Blaikie, C.R. Wolf, Submicron imaging with a planar silver lens. Appl. Phys. Lett. 84, 4403–4405 (2004) D.O.S. Melville, R.J. Blaikie, C.R. Wolf, Submicron imaging with a planar silver lens. Appl. Phys. Lett. 84, 4403–4405 (2004)
32.
go back to reference N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005) N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)
33.
go back to reference Z.M. Zhang, B.J. Lee, Lateral shift in photon tunneling studied by the energy streamline method. Opt. Express 14, 9963–9970 (2006) Z.M. Zhang, B.J. Lee, Lateral shift in photon tunneling studied by the energy streamline method. Opt. Express 14, 9963–9970 (2006)
34.
go back to reference A. Alu, N. Engheta, Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans. Antennas Propag. 51, 2558–2571 (2003) A. Alu, N. Engheta, Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans. Antennas Propag. 51, 2558–2571 (2003)
35.
go back to reference C.-F. Li, Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett. 91, 133903 (2003) C.-F. Li, Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett. 91, 133903 (2003)
36.
go back to reference M.V. Bashevoy, V.A. Fedotov, N.I. Zheludev, Optical whirlpool on an absorbing metallic nanoparticle. Opt. Express 13, 8372–8379 (2005) M.V. Bashevoy, V.A. Fedotov, N.I. Zheludev, Optical whirlpool on an absorbing metallic nanoparticle. Opt. Express 13, 8372–8379 (2005)
37.
go back to reference J.-B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson, Heat transfer between two metallic surfaces at small distances. J. Appl. Phys. 76, 7209–7216 (1994); J.-B. Xu, K. Läuger, K. Dransfeld, and I. H. Wilson, Thermal sensors for investigation of heat transfer in scanning probe microscopy. Rev. Sci. Instrum. 65, 2262–2266 (1994) J.-B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson, Heat transfer between two metallic surfaces at small distances. J. Appl. Phys. 76, 7209–7216 (1994); J.-B. Xu, K. Läuger, K. Dransfeld, and I. H. Wilson, Thermal sensors for investigation of heat transfer in scanning probe microscopy. Rev. Sci. Instrum. 65, 2262–2266 (1994)
38.
go back to reference W. Müller-Hirsch, A. Kraft, M.T. Hirsch, J. Parisi, A. Kittel, Heat transfer in ultrahigh vacuum scanning thermal microscopy. J. Vac. Sci. Technol. A 17, 1205–1210 (1999) W. Müller-Hirsch, A. Kraft, M.T. Hirsch, J. Parisi, A. Kittel, Heat transfer in ultrahigh vacuum scanning thermal microscopy. J. Vac. Sci. Technol. A 17, 1205–1210 (1999)
39.
go back to reference R. Hillenbrand, T. Taubner, and F. Kellmann, Phonon-enhanced light-matter interaction at the nanometer scale. Nature 418, 159–162 (2002); R. Hillenbrand, Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy 100, 421–427 (2004) R. Hillenbrand, T. Taubner, and F. Kellmann, Phonon-enhanced light-matter interaction at the nanometer scale. Nature 418, 159–162 (2002); R. Hillenbrand, Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy 100, 421–427 (2004)
40.
go back to reference Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, J.-J. Greffet, Thermal radiation scanning tunnelling microscopy. Nature 444, 740–743 (2006) Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, J.-J. Greffet, Thermal radiation scanning tunnelling microscopy. Nature 444, 740–743 (2006)
41.
go back to reference C.R. Otey, W.T. Lau, S. Fan, Thermal rectification through vacuum. Phys. Rev. Lett. 104, 154301 (2010) C.R. Otey, W.T. Lau, S. Fan, Thermal rectification through vacuum. Phys. Rev. Lett. 104, 154301 (2010)
42.
go back to reference L.P. Wang, Z.M. Zhang, Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material. Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013) L.P. Wang, Z.M. Zhang, Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material. Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013)
43.
go back to reference P. Ben-Abdallah and S.-A. Biehs, Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013); ibid, Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014) P. Ben-Abdallah and S.-A. Biehs, Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013); ibid, Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014)
44.
go back to reference A. Narayanaswamy, G. Chen, Surface modes for near field thermophotovoltaics. Appl. Phys. Lett. 82, 3544–3546 (2003) A. Narayanaswamy, G. Chen, Surface modes for near field thermophotovoltaics. Appl. Phys. Lett. 82, 3544–3546 (2003)
45.
go back to reference M. Francoeur, R. Vaillon, M.P. Mengüç, Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans. Energy Conv. 26, 686–698 (2011) M. Francoeur, R. Vaillon, M.P. Mengüç, Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans. Energy Conv. 26, 686–698 (2011)
46.
go back to reference A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, E. Meyhofer, Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018) A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, E. Meyhofer, Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018)
47.
go back to reference E. Tervo, E. Bagherisereshki, Z.M. Zhang, Near-field radiative thermoelectric energy converters: a review. Front. Energy 12, 5–21 (2018) E. Tervo, E. Bagherisereshki, Z.M. Zhang, Near-field radiative thermoelectric energy converters: a review. Front. Energy 12, 5–21 (2018)
48.
go back to reference A. I. Volokitin and B. N. J. Persson, Radiative heat transfer between nanostructures. Phys. Rev. B 63, 205404 (2001); ibid, Resonance phonon tunneling of the radiative heat transfer. Phys. Rev. B 69, 045417 (2004) A. I. Volokitin and B. N. J. Persson, Radiative heat transfer between nanostructures. Phys. Rev. B 63, 205404 (2001); ibid, Resonance phonon tunneling of the radiative heat transfer. Phys. Rev. B 69, 045417 (2004)
49.
go back to reference X.J. Wang, S. Basu, Z.M. Zhang, Parametric optimization of dielectric functions for maximizing nanoscale radiative transfer. J. Phys. D Appl. Phys. 42, 245403 (2009) X.J. Wang, S. Basu, Z.M. Zhang, Parametric optimization of dielectric functions for maximizing nanoscale radiative transfer. J. Phys. D Appl. Phys. 42, 245403 (2009)
50.
go back to reference S. Basu, B.J. Lee, Z.M. Zhang, Infrared radiative properties of heavily doped silicon at room temperature. J. Heat Transfer 132, 023301 (2010); ibid, Near-field radiation calculated with an improved dielectric function model for doped silicon. J. Heat Transfer 132, 023302 (2010) S. Basu, B.J. Lee, Z.M. Zhang, Infrared radiative properties of heavily doped silicon at room temperature. J. Heat Transfer 132, 023301 (2010); ibid, Near-field radiation calculated with an improved dielectric function model for doped silicon. J. Heat Transfer 132, 023302 (2010)
51.
go back to reference D. Polder, M. van Hove, Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971) D. Polder, M. van Hove, Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971)
52.
go back to reference J.J. Loomis, H.J. Maris, Theory of heat transfer by evanescent electromagnetic waves. Phys. Rev. B 50, 18517–18524 (1994) J.J. Loomis, H.J. Maris, Theory of heat transfer by evanescent electromagnetic waves. Phys. Rev. B 50, 18517–18524 (1994)
53.
go back to reference G. Domingues, S. Volz, K. Joulain, J.-J. Greffet, Heat transfer between two nanoparticles through near field interaction. Phys. Rev. Lett. 94, 085901 (2005) G. Domingues, S. Volz, K. Joulain, J.-J. Greffet, Heat transfer between two nanoparticles through near field interaction. Phys. Rev. Lett. 94, 085901 (2005)
54.
go back to reference A. Narayanaswamy, G. Chen, Thermal near-field radiative transfer between two spheres. Phys. Rev. B 77, 075125 (2008) A. Narayanaswamy, G. Chen, Thermal near-field radiative transfer between two spheres. Phys. Rev. B 77, 075125 (2008)
55.
go back to reference M. Francoeur, M.P. Mengüç, R. Vaillon, Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transfer 110, 2002–2018 (2009) M. Francoeur, M.P. Mengüç, R. Vaillon, Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transfer 110, 2002–2018 (2009)
56.
go back to reference S. Edalatpour, M. Francoeur, The thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries. J. Quant. Spectrosc. Radiat. Transfer 133, 364–373 (2014) S. Edalatpour, M. Francoeur, The thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries. J. Quant. Spectrosc. Radiat. Transfer 133, 364–373 (2014)
57.
go back to reference G. Bimonte, T. Emig, M. Kardar, M. Krüger, Nonequilibrium fluctuational quantum electrodynamics: heat radiation, heat transfer, and force. Annu. Rev. Conden. Mat. Phys. 8, 119–143 (2017) G. Bimonte, T. Emig, M. Kardar, M. Krüger, Nonequilibrium fluctuational quantum electrodynamics: heat radiation, heat transfer, and force. Annu. Rev. Conden. Mat. Phys. 8, 119–143 (2017)
58.
go back to reference C.R. Otey, L. Zhu, S. Sandhu, S. Fan, Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: a brief overview. J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014) C.R. Otey, L. Zhu, S. Sandhu, S. Fan, Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: a brief overview. J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014)
59.
go back to reference Y.M. Xuan, An overview of micro/nanoscaled thermal radiation and its applications. Photon. Nanostr. Fundam. Appl. 12, 93–113 (2014) Y.M. Xuan, An overview of micro/nanoscaled thermal radiation and its applications. Photon. Nanostr. Fundam. Appl. 12, 93–113 (2014)
60.
go back to reference X.L. Liu, Z.M. Zhang, Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons. Appl. Phys. Lett. 107, 143114 (2015) X.L. Liu, Z.M. Zhang, Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons. Appl. Phys. Lett. 107, 143114 (2015)
61.
go back to reference X.L. Liu, Z.M. Zhang, Near-field thermal radiation between metasurfaces. ACS Photon. 2, 1320–1326 (2015) X.L. Liu, Z.M. Zhang, Near-field thermal radiation between metasurfaces. ACS Photon. 2, 1320–1326 (2015)
62.
go back to reference S.M. Rytov, Correlation theory of thermal fluctuations in an isotropic medium. Sov. Phys. JETP 6, 130–140 (1958); S.M. Rytov, Yu.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics III: Elements of Random Fields, vol. 3 (Springer-Verlag, Berlin, 1987) Chap. 3 S.M. Rytov, Correlation theory of thermal fluctuations in an isotropic medium. Sov. Phys. JETP 6, 130–140 (1958); S.M. Rytov, Yu.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics III: Elements of Random Fields, vol. 3 (Springer-Verlag, Berlin, 1987) Chap. 3
63.
go back to reference A.L. Volokitin, B.N.J. Persson, Resonant photon tunneling enhancement of the van der Waals friction. Phys. Rev. Lett. 91, 106101 (2003) A.L. Volokitin, B.N.J. Persson, Resonant photon tunneling enhancement of the van der Waals friction. Phys. Rev. Lett. 91, 106101 (2003)
64.
go back to reference J.R. Zurita-Sánchez, J.-J. Greffet, L. Novotny, Friction forces arising from fluctuating thermal fields. Phys. Rev. A 69, 022902 (2004) J.R. Zurita-Sánchez, J.-J. Greffet, L. Novotny, Friction forces arising from fluctuating thermal fields. Phys. Rev. A 69, 022902 (2004)
65.
go back to reference Narayanaswamy, Y. Zheng, A Green’s function formalism of energy and momentum transfer in fluctuational electrodynamics. J. Quant. Spectrosc. Radiat. Transfer 132, 12–21 (2014) Narayanaswamy, Y. Zheng, A Green’s function formalism of energy and momentum transfer in fluctuational electrodynamics. J. Quant. Spectrosc. Radiat. Transfer 132, 12–21 (2014)
66.
go back to reference K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003) K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003)
67.
go back to reference L.P. Wang, S. Basu, Z.M. Zhang, Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures. J. Heat Transfer 133, 072701 (2011) L.P. Wang, S. Basu, Z.M. Zhang, Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures. J. Heat Transfer 133, 072701 (2011)
68.
go back to reference K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, J.-J. Greffet, Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005) K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, J.-J. Greffet, Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005)
69.
go back to reference P.W. Milonni, M.-L. Shih, Zero-point energy in early quantum theory. Am. J. Phys. 59, 684–698 (1991) P.W. Milonni, M.-L. Shih, Zero-point energy in early quantum theory. Am. J. Phys. 59, 684–698 (1991)
70.
go back to reference B.J. Lee, Z.M. Zhang, Lateral shifts in near-field thermal radiation with surface phonon polaritons. Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008) B.J. Lee, Z.M. Zhang, Lateral shifts in near-field thermal radiation with surface phonon polaritons. Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008)
71.
go back to reference T.J. Bright, X.L. Liu, Z.M. Zhang, Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials. Opt. Express 22, A1112–A1127 (2014) T.J. Bright, X.L. Liu, Z.M. Zhang, Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials. Opt. Express 22, A1112–A1127 (2014)
72.
go back to reference V. Chiloyan, J. Garg, K. Esfarjani, G. Chen, Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps. Nat. Comm. 6, 6755 (2015) V. Chiloyan, J. Garg, K. Esfarjani, G. Chen, Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps. Nat. Comm. 6, 6755 (2015)
73.
go back to reference K. Kim, B. Song, V. Fernández-Hurtado et al., Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015) K. Kim, B. Song, V. Fernández-Hurtado et al., Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015)
74.
go back to reference K. Kloppstech, N. Könne, S.-A. Biehs, A.W. Rodriguez, L. Worbes, D. Hellmann, A. Kittel, Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun. 8, 14475 (2017) K. Kloppstech, N. Könne, S.-A. Biehs, A.W. Rodriguez, L. Worbes, D. Hellmann, A. Kittel, Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun. 8, 14475 (2017)
75.
go back to reference L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nat. Commun. 8, 14479 (2017) L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nat. Commun. 8, 14479 (2017)
76.
go back to reference W.P. King, T.W. Kenny, K.E. Goodson, G. Cross, M. Despont, U. Dürig, H. Rothuizen, G.K. Binnig, P. Vettiger, Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001) W.P. King, T.W. Kenny, K.E. Goodson, G. Cross, M. Despont, U. Dürig, H. Rothuizen, G.K. Binnig, P. Vettiger, Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)
77.
go back to reference S. Basu, Z.M. Zhang, Maximum energy transfer in near-field thermal radiation at nanometer distances. J. Appl. Phys. 105, 093535 (2009) S. Basu, Z.M. Zhang, Maximum energy transfer in near-field thermal radiation at nanometer distances. J. Appl. Phys. 105, 093535 (2009)
78.
go back to reference Z.M. Zhang, X.J. Wang, Unified Wien’s displacement law in terms of logarithmic frequency or wavelength scale. J. Thermophys. Heat Transfer 24, 222–224 (2010) Z.M. Zhang, X.J. Wang, Unified Wien’s displacement law in terms of logarithmic frequency or wavelength scale. J. Thermophys. Heat Transfer 24, 222–224 (2010)
79.
go back to reference P.O. Chapuis, S. Volz, C. Henkel, K. Joulain, J.-J. Greffet, Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. Phys. Rev. B 77, 035431 (2008) P.O. Chapuis, S. Volz, C. Henkel, K. Joulain, J.-J. Greffet, Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. Phys. Rev. B 77, 035431 (2008)
80.
go back to reference B. Guha, C. Otey, C.B. Poitras, S. Fan, M. Lipson, Near-field radiative cooling of nanostructures. Nano Lett. 12, 4546–4550 (2012) B. Guha, C. Otey, C.B. Poitras, S. Fan, M. Lipson, Near-field radiative cooling of nanostructures. Nano Lett. 12, 4546–4550 (2012)
81.
go back to reference B.J. Lee, K. Park, Z.M. Zhang, Energy pathways in nanoscale thermal radiation. App. Phys. Lett. 91, 153101 (2007) B.J. Lee, K. Park, Z.M. Zhang, Energy pathways in nanoscale thermal radiation. App. Phys. Lett. 91, 153101 (2007)
82.
go back to reference J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter 11, 6621–6633 (1999) J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter 11, 6621–6633 (1999)
83.
go back to reference S.-A. Biehs, E. Rousseau, J.-J. Greffet, Mesoscopic description of radiative heat transfer at the nanoscale. Phys. Rev. Lett. 105, 234301 (2010) S.-A. Biehs, E. Rousseau, J.-J. Greffet, Mesoscopic description of radiative heat transfer at the nanoscale. Phys. Rev. Lett. 105, 234301 (2010)
84.
go back to reference M.P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, M. Francoeur, Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci. Rep. 5, 11626 (2015) M.P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, M. Francoeur, Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci. Rep. 5, 11626 (2015)
85.
go back to reference K. Joulain, J. Drevillon, P. Ben-Abdallah, Noncontact heat transfer between two metamaterials. Phys. Rev. B 81, 165119 (2010) K. Joulain, J. Drevillon, P. Ben-Abdallah, Noncontact heat transfer between two metamaterials. Phys. Rev. B 81, 165119 (2010)
86.
go back to reference Z.H. Zheng, Y.M. Xuan, Theory of near-field radiative heat transfer for stratified magnetic media. Int. J. Heat Mass Transfer 54, 1101–1110 (2011)MATH Z.H. Zheng, Y.M. Xuan, Theory of near-field radiative heat transfer for stratified magnetic media. Int. J. Heat Mass Transfer 54, 1101–1110 (2011)MATH
87.
go back to reference M. Francoeur, S. Basu, S.J. Petersen, Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Opt. Express 19, 18774–18788 (2011) M. Francoeur, S. Basu, S.J. Petersen, Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Opt. Express 19, 18774–18788 (2011)
88.
go back to reference X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes. Appl. Phys. Lett. 103, 213102 (2013) X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes. Appl. Phys. Lett. 103, 213102 (2013)
89.
go back to reference X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field radiative heat transfer with doped-silicon nanostructured metamaterials. Int. J. Heat Mass Transfer 73, 389–398 (2014) X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field radiative heat transfer with doped-silicon nanostructured metamaterials. Int. J. Heat Mass Transfer 73, 389–398 (2014)
90.
go back to reference M. Tschikin, S.-A. Biehs, R. Messina, P. Ben-Abdallah, On the limits of the effective description of hyperbolic materials in the presence of surface waves. J. Opt. 15, 105101 (2013) M. Tschikin, S.-A. Biehs, R. Messina, P. Ben-Abdallah, On the limits of the effective description of hyperbolic materials in the presence of surface waves. J. Opt. 15, 105101 (2013)
91.
go back to reference B. Liu, S. Shen, Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: direct numerical simulation by the Wiener chaos expansion method. Phys. Rev. B 87, 115403 (2013) B. Liu, S. Shen, Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: direct numerical simulation by the Wiener chaos expansion method. Phys. Rev. B 87, 115403 (2013)
92.
go back to reference X.L. Liu, T.J. Bright, Z.M. Zhang, Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials. J. Heat Transfer 136, 092703 (2014) X.L. Liu, T.J. Bright, Z.M. Zhang, Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials. J. Heat Transfer 136, 092703 (2014)
93.
go back to reference J. Peng, G. Zhang, B. Li, Thermal management in MoS2 based integrated device using near-field radiation. Appl. Phys. Lett. 107, 133108 (2015) J. Peng, G. Zhang, B. Li, Thermal management in MoS2 based integrated device using near-field radiation. Appl. Phys. Lett. 107, 133108 (2015)
94.
go back to reference J. Shen, S. Guo, X.L. Liu, B. Liu, W. Wu, H. He, Super-Planckian thermal radiation enabled by coupled quasi-elliptic 2D black phosphorus plasmons. Appl. Therm. Eng. 144, 403–410 (2018) J. Shen, S. Guo, X.L. Liu, B. Liu, W. Wu, H. He, Super-Planckian thermal radiation enabled by coupled quasi-elliptic 2D black phosphorus plasmons. Appl. Therm. Eng. 144, 403–410 (2018)
95.
go back to reference Y. Zhang, H.-L. Yi, H.-P. Tan, Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons. ACS Photon. 5, 3739–3747 (2018) Y. Zhang, H.-L. Yi, H.-P. Tan, Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons. ACS Photon. 5, 3739–3747 (2018)
96.
go back to reference L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, Y. Luo, Control of near-field radiative heat transfer based on anisotropic 2D materials. AIP Adv. 8, 085321 (2018) L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, Y. Luo, Control of near-field radiative heat transfer based on anisotropic 2D materials. AIP Adv. 8, 085321 (2018)
97.
go back to reference X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photon. 1, 785–789 (2014) X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photon. 1, 785–789 (2014)
98.
go back to reference M. Lim, S.S. Lee, B.J. Lee, Near-field thermal radiation between graphene-covered doped silicon plates. Opt. Express 21, 22173–22185 (2013) M. Lim, S.S. Lee, B.J. Lee, Near-field thermal radiation between graphene-covered doped silicon plates. Opt. Express 21, 22173–22185 (2013)
99.
go back to reference R.Z. Zhang, X.L. Liu, Z.M. Zhang, Near-field radiation between graphene-covered carbon nanotube arrays. AIP Adv. 5, 053501 (2015) R.Z. Zhang, X.L. Liu, Z.M. Zhang, Near-field radiation between graphene-covered carbon nanotube arrays. AIP Adv. 5, 053501 (2015)
100.
go back to reference B. Zhao, Z.M. Zhang, Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures. J. Heat Transfer 139, 022701 (2017) B. Zhao, Z.M. Zhang, Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures. J. Heat Transfer 139, 022701 (2017)
101.
go back to reference B. Zhao, B. Guizal, Z.M. Zhang, S. Fan, M. Antezza, Near-field heat transfer between graphene/hBN multilayers. Phys. Rev. B 95, 245437 (2017) B. Zhao, B. Guizal, Z.M. Zhang, S. Fan, M. Antezza, Near-field heat transfer between graphene/hBN multilayers. Phys. Rev. B 95, 245437 (2017)
102.
go back to reference S.-A. Biehs, F.S.S. Rosa, P. Ben-Abdallah, Modulation of near-field heat transfer between two gratings. Appl. Phys. Lett. 98, 243102 (2011) S.-A. Biehs, F.S.S. Rosa, P. Ben-Abdallah, Modulation of near-field heat transfer between two gratings. Appl. Phys. Lett. 98, 243102 (2011)
103.
go back to reference X.L. Liu, J.D. Shen, Y.M. Xuan, Pattern-free thermal modulator via thermal radiation between Van der Waals materials. J. Quant. Spectrosc. Radiat. Transfer 200, 100–107 (2017) X.L. Liu, J.D. Shen, Y.M. Xuan, Pattern-free thermal modulator via thermal radiation between Van der Waals materials. J. Quant. Spectrosc. Radiat. Transfer 200, 100–107 (2017)
104.
go back to reference X.H. Wu, C.J. Fu, Z.M. Zhang, Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures. J. Photon. Energy 9, 032702 (2018) X.H. Wu, C.J. Fu, Z.M. Zhang, Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures. J. Photon. Energy 9, 032702 (2018)
105.
go back to reference X.H. Wu, C.J. Fu, Z.M. Zhang, Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials. Int. J. Heat Mass Transfer 135, 1207–1217 (2019) X.H. Wu, C.J. Fu, Z.M. Zhang, Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials. Int. J. Heat Mass Transfer 135, 1207–1217 (2019)
106.
go back to reference L. Tsang, J.A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000) L. Tsang, J.A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000)
107.
go back to reference A. Narayanaswamy, G. Chen, Thermal radiation in 1D photonic crystals. J. Quant. Spectrosc. Radiat. Transfer 93, 175–183 (2005) A. Narayanaswamy, G. Chen, Thermal radiation in 1D photonic crystals. J. Quant. Spectrosc. Radiat. Transfer 93, 175–183 (2005)
108.
go back to reference S. Basu, Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps: Fundamentals and Applications (Elsevier, Amsterdam, 2016) S. Basu, Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps: Fundamentals and Applications (Elsevier, Amsterdam, 2016)
109.
go back to reference K. Park, S. Basu, W.P. King, Z.M. Zhang, Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008) K. Park, S. Basu, W.P. King, Z.M. Zhang, Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008)
110.
go back to reference G.J. Kovacs, Optical excitation of surface plasmon-polaritons in layered media, in Electromagnetic Surface Modes, ed. by A.D. Boardman (Wiley, New York, 1982) G.J. Kovacs, Optical excitation of surface plasmon-polaritons in layered media, in Electromagnetic Surface Modes, ed. by A.D. Boardman (Wiley, New York, 1982)
111.
go back to reference W.C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995) W.C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995)
112.
go back to reference X.L. Liu, Z.M. Zhang, High-performance electroluminescent refrigeration enabled by photon tunneling. Nano Energy 26, 353–359 (2016) X.L. Liu, Z.M. Zhang, High-performance electroluminescent refrigeration enabled by photon tunneling. Nano Energy 26, 353–359 (2016)
113.
go back to reference B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, S. Fan, High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy 41, 344–350 (2017) B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, S. Fan, High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy 41, 344–350 (2017)
114.
go back to reference J. DeSutter, R. Vaillon, M. Francoeur, External luminescence and photon recycling in near-field thermophotovoltaics. Phys. Rev. Appl. 8, 014030 (2017) J. DeSutter, R. Vaillon, M. Francoeur, External luminescence and photon recycling in near-field thermophotovoltaics. Phys. Rev. Appl. 8, 014030 (2017)
115.
go back to reference B. Zhao, P. Santhanam, K. Chen, S. Buddhiraju, S. Fan, Near-field thermophotonic systems for low-grade waste-heat recovery. Nano Lett. 18, 5224–5230 (2018) B. Zhao, P. Santhanam, K. Chen, S. Buddhiraju, S. Fan, Near-field thermophotonic systems for low-grade waste-heat recovery. Nano Lett. 18, 5224–5230 (2018)
116.
go back to reference J.K. Lee, J.A. Kong, Dyadic Green’s functions for layered anisotropic medium. Electromagnet. 3, 111–130 (1983) J.K. Lee, J.A. Kong, Dyadic Green’s functions for layered anisotropic medium. Electromagnet. 3, 111–130 (1983)
117.
go back to reference A. Eroglu, Y.H. Lee, J.K. Lee, Dyadic Green’s functions for multi-layered uniaxially anisotropic media with arbitrarily oriented optic axes. IET Microwaves Antennas Propag. 5, 1779–1788 (2011) A. Eroglu, Y.H. Lee, J.K. Lee, Dyadic Green’s functions for multi-layered uniaxially anisotropic media with arbitrarily oriented optic axes. IET Microwaves Antennas Propag. 5, 1779–1788 (2011)
118.
go back to reference A. Eroglu, Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Springer, New York, 2010) A. Eroglu, Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Springer, New York, 2010)
119.
go back to reference L.Y. Carrillo, Y. Bayazitoglu, Nanorod near-field radiative heat exchange analysis. J. Quant. Spectrosc. Radiat. Transfer 112, 412–419 (2011); ibid, Sphere approximation for nanorod near-field radiative heat exchange analysis. Nanoscale Microscale Thermophys. Eng. 15, 195–208 (2011) L.Y. Carrillo, Y. Bayazitoglu, Nanorod near-field radiative heat exchange analysis. J. Quant. Spectrosc. Radiat. Transfer 112, 412–419 (2011); ibid, Sphere approximation for nanorod near-field radiative heat exchange analysis. Nanoscale Microscale Thermophys. Eng. 15, 195–208 (2011)
120.
go back to reference K. Sasihithlu, A. Narayanaswamy, Convergence of vector spherical wave expansion method applied to near-field radiative transfer. Opt. Express 19, A772–A785 (2011) K. Sasihithlu, A. Narayanaswamy, Convergence of vector spherical wave expansion method applied to near-field radiative transfer. Opt. Express 19, A772–A785 (2011)
121.
go back to reference S.Y. Park, D. Stroud, Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. Phys. Rev. B 69, 125418 (2004) S.Y. Park, D. Stroud, Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. Phys. Rev. B 69, 125418 (2004)
122.
go back to reference P. Ben-Abdallah, K. Joulain, J. Drevillon, C. Le Goff, Heat transport through plasmonic interactions in closely spaced metallic nanoparticle chains. Phys. Rev. B 77, 075417 (2008) P. Ben-Abdallah, K. Joulain, J. Drevillon, C. Le Goff, Heat transport through plasmonic interactions in closely spaced metallic nanoparticle chains. Phys. Rev. B 77, 075417 (2008)
123.
go back to reference E.J. Tervo, M. Francoeur, B.A. Cola, Z.M. Zhang, Thermal radiation in systems of many dipoles. Phys. Rev. B 100, 205422 (2019) E.J. Tervo, M. Francoeur, B.A. Cola, Z.M. Zhang, Thermal radiation in systems of many dipoles. Phys. Rev. B 100, 205422 (2019)
124.
go back to reference K. Park, Z.M. Zhang, Fundamentals and applications of near-field radiative energy transfer. Front. Heat Mass Transfer 4, 013001 (2013) K. Park, Z.M. Zhang, Fundamentals and applications of near-field radiative energy transfer. Front. Heat Mass Transfer 4, 013001 (2013)
125.
go back to reference C. Luo, A. Narayanaswamy, G. Chen, J.D. Joannopoulos, Thermal radiation from photonic crystals: a direct calculation. Phys. Rev. Lett. 93, 213905 (2004) C. Luo, A. Narayanaswamy, G. Chen, J.D. Joannopoulos, Thermal radiation from photonic crystals: a direct calculation. Phys. Rev. Lett. 93, 213905 (2004)
126.
go back to reference S. Wen, Direct numerical simulation of near-field thermal radiation based on Wiener Chaos expansion of thermal fluctuating current. J. Heat Transfer 132, 072704 (2010) S. Wen, Direct numerical simulation of near-field thermal radiation based on Wiener Chaos expansion of thermal fluctuating current. J. Heat Transfer 132, 072704 (2010)
127.
go back to reference A.W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J.D. Joannopoulos, M. Soljacic, S.G. Johnson, Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials. Phys. Rev. Lett. 107, 114302 (2011) A.W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J.D. Joannopoulos, M. Soljacic, S.G. Johnson, Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials. Phys. Rev. Lett. 107, 114302 (2011)
128.
go back to reference M. Krüger, T. Emig, M. Kardar, Nonequilibrium electromagnetic fluctuations: heat transfer and interactions. Phys. Rev. Lett. 106, 210404 (2011) M. Krüger, T. Emig, M. Kardar, Nonequilibrium electromagnetic fluctuations: heat transfer and interactions. Phys. Rev. Lett. 106, 210404 (2011)
129.
go back to reference C.R. Otey, S. Fan, Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate. Phys. Rev. B 84, 245431 (2011) C.R. Otey, S. Fan, Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate. Phys. Rev. B 84, 245431 (2011)
130.
go back to reference A.W. Rodriguez, M.T. Homer Reid, S.G. Johnson, Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Phys. Rev. B 86, 220302 (2012); ibid, Fluctuating-surface-current formulation of radiative heat transfer: theory and applications. Phys. Rev. B 88, 054305 (2013) A.W. Rodriguez, M.T. Homer Reid, S.G. Johnson, Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Phys. Rev. B 86, 220302 (2012); ibid, Fluctuating-surface-current formulation of radiative heat transfer: theory and applications. Phys. Rev. B 88, 054305 (2013)
131.
go back to reference A. Datas, D. Hirashima, K. Hanamura, FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: lessons learned. J. Therm. Sci. Technol. 8, 91–105 (2013) A. Datas, D. Hirashima, K. Hanamura, FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: lessons learned. J. Therm. Sci. Technol. 8, 91–105 (2013)
132.
go back to reference A. Didari, M.P. Mengüç, Analysis of near-field radiation transfer within nano-gaps using FDTD method. J. Quant. Spectrosc. Radiat. Transfer 146, 214–226 (2014); ibid, Near-field thermal radiation transfer by mesoporous metamaterials. Opt. Express 23, A1253-A1258 (2015) A. Didari, M.P. Mengüç, Analysis of near-field radiation transfer within nano-gaps using FDTD method. J. Quant. Spectrosc. Radiat. Transfer 146, 214–226 (2014); ibid, Near-field thermal radiation transfer by mesoporous metamaterials. Opt. Express 23, A1253-A1258 (2015)
133.
go back to reference B. Song, A. Fiorino, E. Meyhofer, P. Reddy, Near-field radiative thermal transport: From theory to experiment. AIP Adv. 5, 053503 (2015) B. Song, A. Fiorino, E. Meyhofer, P. Reddy, Near-field radiative thermal transport: From theory to experiment. AIP Adv. 5, 053503 (2015)
134.
go back to reference J.C. Cuevas, F.J. García-Vidal, Radiative heat transfer. ACS Photon. 5, 3896–3915 (2018) J.C. Cuevas, F.J. García-Vidal, Radiative heat transfer. ACS Photon. 5, 3896–3915 (2018)
135.
go back to reference G. Bimonte, Scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium. Phys. Rev. A 80, 042102 (2009) G. Bimonte, Scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium. Phys. Rev. A 80, 042102 (2009)
136.
go back to reference R. Messina, M. Antezza, Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys. Rev. A 84, 042102 (2011) R. Messina, M. Antezza, Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys. Rev. A 84, 042102 (2011)
137.
go back to reference M. Krüger, G. Bimonte, T. Emig, M. Kardar, Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B 86, 115423 (2012) M. Krüger, G. Bimonte, T. Emig, M. Kardar, Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B 86, 115423 (2012)
138.
go back to reference R. Guérout, J. Lussange, F.S.S. Rosa, J.P. Hugonin, D.A.R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, Enhanced radiative heat transfer between nanostructured gold plates. Phys. Rev. B 85, 180301 (2012) R. Guérout, J. Lussange, F.S.S. Rosa, J.P. Hugonin, D.A.R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, Enhanced radiative heat transfer between nanostructured gold plates. Phys. Rev. B 85, 180301 (2012)
139.
go back to reference J. Lussange, R. Guérout, F.S.S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, Radiative heat transfer between two dielectric nanogratings in the scattering approach. Phys. Rev. B 86, 085432 (2012) J. Lussange, R. Guérout, F.S.S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, Radiative heat transfer between two dielectric nanogratings in the scattering approach. Phys. Rev. B 86, 085432 (2012)
140.
go back to reference X.L. Liu, B. Zhao, Z.M. Zhang, Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings. Phys. Rev. A 91, 062510 (2015) X.L. Liu, B. Zhao, Z.M. Zhang, Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings. Phys. Rev. A 91, 062510 (2015)
141.
go back to reference Y. Yang, L.P. Wang, Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps. Phys. Rev. Lett. 117, 044301 (2016) Y. Yang, L.P. Wang, Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps. Phys. Rev. Lett. 117, 044301 (2016)
142.
go back to reference X.L. Liu, Z.M. Zhang, Graphene-assisted near-field radiative heat transfer between corrugated polar materials. Appl. Phys. Lett. 104, 251911 (2014) X.L. Liu, Z.M. Zhang, Graphene-assisted near-field radiative heat transfer between corrugated polar materials. Appl. Phys. Lett. 104, 251911 (2014)
143.
go back to reference X.L. Liu, J. Shen, Y.M. Xuan, Near-field thermal radiation of nanopatterned black phosphorene mediated by topological transitions of phosphorene plasmons. Nanoscale Microscale Thermophys. Eng. 23, 188–199 (2019) X.L. Liu, J. Shen, Y.M. Xuan, Near-field thermal radiation of nanopatterned black phosphorene mediated by topological transitions of phosphorene plasmons. Nanoscale Microscale Thermophys. Eng. 23, 188–199 (2019)
144.
go back to reference J.I. Watjen, X.L. Liu, B. Zhao, Z.M. Zhang, A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices. J. Heat Transfer 139, 052704 (2017) J.I. Watjen, X.L. Liu, B. Zhao, Z.M. Zhang, A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices. J. Heat Transfer 139, 052704 (2017)
145.
go back to reference B. Wang, C. Lin, K.H. Teo, Z.M. Zhang, Thermoradiative device enhanced by near-field coupled structures. J. Quant. Spectrosc. Radiat. Transfer 196, 10–16 (2017) B. Wang, C. Lin, K.H. Teo, Z.M. Zhang, Thermoradiative device enhanced by near-field coupled structures. J. Quant. Spectrosc. Radiat. Transfer 196, 10–16 (2017)
146.
go back to reference A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)MATH A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)MATH
147.
go back to reference S.D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool Publishers, 2011) S.D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool Publishers, 2011)
148.
go back to reference F.L. Teixeira, Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56, 2150–2166 (2008)MathSciNetMATH F.L. Teixeira, Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56, 2150–2166 (2008)MathSciNetMATH
149.
go back to reference K. Fu, P.F. Hsu, Modeling the radiative properties of microscale random roughness surfaces. J. Heat Transfer 129, 71–78 (2007); ibid, Radiative properties of gold surfaces with one-dimensional microscale Gaussian random roughness. Int. J. Thermophys. 28, 598–615 (2007) K. Fu, P.F. Hsu, Modeling the radiative properties of microscale random roughness surfaces. J. Heat Transfer 129, 71–78 (2007); ibid, Radiative properties of gold surfaces with one-dimensional microscale Gaussian random roughness. Int. J. Thermophys. 28, 598–615 (2007)
150.
go back to reference Y.M. Xuan, Y.G. Han, Y. Zhou, Spectral radiative properties of two-dimensional rough surfaces. Int. J. Thermophys. 33, 2291–2310 (2012) Y.M. Xuan, Y.G. Han, Y. Zhou, Spectral radiative properties of two-dimensional rough surfaces. Int. J. Thermophys. 33, 2291–2310 (2012)
151.
go back to reference B. Zhao, Z.M. Zhang, Design of optical and radiative properties of surfaces, in Handbook of Thermal Science and Engineering, ed. by F.A. Kulacki, et al. (Springer, New York, 2018), pp. 1023–1068 B. Zhao, Z.M. Zhang, Design of optical and radiative properties of surfaces, in Handbook of Thermal Science and Engineering, ed. by F.A. Kulacki, et al. (Springer, New York, 2018), pp. 1023–1068
152.
go back to reference D. Lu, A. Das, W. Park, Direct modeling of near field thermal radiation in a metamaterial. Opt. Express 25, 12999–13009 (2017) D. Lu, A. Das, W. Park, Direct modeling of near field thermal radiation in a metamaterial. Opt. Express 25, 12999–13009 (2017)
153.
go back to reference J. Andreasen, H. Cao, A. Taflove, P. Kumar, C. Cao, FDTD simulation of thermal noise in open cavities. Phys. Rev. A 77, 023810 (2008) J. Andreasen, H. Cao, A. Taflove, P. Kumar, C. Cao, FDTD simulation of thermal noise in open cavities. Phys. Rev. A 77, 023810 (2008)
154.
go back to reference A. Didari, M.P. Mengüç, A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: the NF-RT-FDTD algorithm. J. Quant. Spectrosc. Radiat. Transfer 197, 95–105 (2017); ibid, A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci. Rep. 8, 16891 (2018) A. Didari, M.P. Mengüç, A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: the NF-RT-FDTD algorithm. J. Quant. Spectrosc. Radiat. Transfer 197, 95–105 (2017); ibid, A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci. Rep. 8, 16891 (2018)
155.
go back to reference M. Badieirostami, A. Adibi, H.M. Zhou, S.N. Chow, Model for efficient simulation of spatially incoherent right using the Wiener chaos expansion method. Opt. Lett. 32, 3188–3190 (2007) M. Badieirostami, A. Adibi, H.M. Zhou, S.N. Chow, Model for efficient simulation of spatially incoherent right using the Wiener chaos expansion method. Opt. Lett. 32, 3188–3190 (2007)
156.
go back to reference S. Basu, Z.M. Zhang, Ultrasmall penetration depth in nanoscale thermal radiation. Appl. Phys. Lett. 95, 133104 (2009) S. Basu, Z.M. Zhang, Ultrasmall penetration depth in nanoscale thermal radiation. Appl. Phys. Lett. 95, 133104 (2009)
157.
go back to reference A.P. McCauley, M.T. Homer Reid, M. Krüger, S.G. Johnson, Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional numerical scattering technique. Phys. Rev. B 85, 165104 (2012) A.P. McCauley, M.T. Homer Reid, M. Krüger, S.G. Johnson, Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional numerical scattering technique. Phys. Rev. B 85, 165104 (2012)
158.
go back to reference S. Rao, D. Wilton, A. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982) S. Rao, D. Wilton, A. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)
159.
go back to reference K. L. Nguyen, O. Merchiers, and P.-O. Chapuis, Near-field radiative heat transfer in scanning thermal microscopy computed with the boundary element method. J. Quant. Spectrosc. Radiat. Transfer 202, 154–167 (2017) K. L. Nguyen, O. Merchiers, and P.-O. Chapuis, Near-field radiative heat transfer in scanning thermal microscopy computed with the boundary element method. J. Quant. Spectrosc. Radiat. Transfer 202, 154–167 (2017)
160.
go back to reference M.T. Homer Reid, J. White, S.G. Johnson, Fluctuating surface currents: an algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries. Phys. Rev. A 88, 022514 (2013) M.T. Homer Reid, J. White, S.G. Johnson, Fluctuating surface currents: an algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries. Phys. Rev. A 88, 022514 (2013)
161.
go back to reference A.G. Polimeridis, M.T. Homer Reid, W. Jin, S.G. Johnson, J.K. White, A.W. Rodriguez, Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandescence and luminescence in arbitrary geometries. Phys. Rev. B 92, 134202 (2015) A.G. Polimeridis, M.T. Homer Reid, W. Jin, S.G. Johnson, J.K. White, A.W. Rodriguez, Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandescence and luminescence in arbitrary geometries. Phys. Rev. B 92, 134202 (2015)
162.
go back to reference M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998) M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998)
163.
go back to reference S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics – a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001) S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics – a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001)
164.
go back to reference P. Ben-Abdallah, Heat transfer through near-field interactions in nanofluids. Appl. Phys. Lett. 89, 224301 (2006) P. Ben-Abdallah, Heat transfer through near-field interactions in nanofluids. Appl. Phys. Lett. 89, 224301 (2006)
165.
go back to reference J. Ordonez-Miranda, L. Tranchant, S. Gluchko, S. Volz, Energy transport of surface phonon polaritons propagating along a chain of spheroidal nanoparticles. Phys. Rev. B 92, 115409 (2015) J. Ordonez-Miranda, L. Tranchant, S. Gluchko, S. Volz, Energy transport of surface phonon polaritons propagating along a chain of spheroidal nanoparticles. Phys. Rev. B 92, 115409 (2015)
166.
go back to reference E.J. Tervo, Z.M. Zhang, B.A. Cola, Collective near-field thermal emission from polaritonic nanoparticle arrays. Phys. Rev. Mater. 1, 015201 (2017) E.J. Tervo, Z.M. Zhang, B.A. Cola, Collective near-field thermal emission from polaritonic nanoparticle arrays. Phys. Rev. Mater. 1, 015201 (2017)
167.
go back to reference C. Kathmann, R. Messina, P. Ben-Abdallah, S.-A. Biehs, Limitations of kinetic theory to describe near-field heat exchanges in many-body systems. Phys. Rev. B 98, 115434 (2018) C. Kathmann, R. Messina, P. Ben-Abdallah, S.-A. Biehs, Limitations of kinetic theory to describe near-field heat exchanges in many-body systems. Phys. Rev. B 98, 115434 (2018)
168.
go back to reference J. Ordonez-Miranda, L. Tranchant, K. Joulain, Y. Ezzahri, J. Drevillon, S. Volz, Thermal energy transport in a surface phonon-polariton crystal. Phys. Rev. B 93, 035428 (2016) J. Ordonez-Miranda, L. Tranchant, K. Joulain, Y. Ezzahri, J. Drevillon, S. Volz, Thermal energy transport in a surface phonon-polariton crystal. Phys. Rev. B 93, 035428 (2016)
169.
go back to reference E.J. Tervo, M.E. Gustafson, Z.M. Zhang, B.A. Cola, M.A. Filler, Photonic thermal conduction by infrared plasmonic resonators in semiconductor nanowires. Appl. Phys. Lett. 114, 163104 (2019) E.J. Tervo, M.E. Gustafson, Z.M. Zhang, B.A. Cola, M.A. Filler, Photonic thermal conduction by infrared plasmonic resonators in semiconductor nanowires. Appl. Phys. Lett. 114, 163104 (2019)
170.
go back to reference G. Baffou, R. Quidant, C. Girard, Thermoplasmonics modeling: a Green’s function approach. Phys. Rev. B 82, 165424 (2010) G. Baffou, R. Quidant, C. Girard, Thermoplasmonics modeling: a Green’s function approach. Phys. Rev. B 82, 165424 (2010)
171.
go back to reference P. Ben-Abdallah, S.-A. Biehs, K. Joulain, Many-body radiative heat transfer theory. Phys. Rev. Lett. 107, 114301 (2011) P. Ben-Abdallah, S.-A. Biehs, K. Joulain, Many-body radiative heat transfer theory. Phys. Rev. Lett. 107, 114301 (2011)
172.
go back to reference P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, C. Henkel, Heat superdiffusion in plasmonic nanostructure networks. Phys. Rev. Lett. 111, 174301 (2003) P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, C. Henkel, Heat superdiffusion in plasmonic nanostructure networks. Phys. Rev. Lett. 111, 174301 (2003)
173.
go back to reference R. Messina, M. Tschikin, S.A. Biehs, P. Ben-Abdallah, Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles. Phys. Rev. B 88, 104307 (2013) R. Messina, M. Tschikin, S.A. Biehs, P. Ben-Abdallah, Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles. Phys. Rev. B 88, 104307 (2013)
174.
go back to reference J. Dong, J.M. Zhao, L.H. Liu, Radiative heat transfer in many-body systems: coupled electric and magnetic dipole approach. Phys. Rev. B 95, 125411 (2017) J. Dong, J.M. Zhao, L.H. Liu, Radiative heat transfer in many-body systems: coupled electric and magnetic dipole approach. Phys. Rev. B 95, 125411 (2017)
175.
go back to reference J. Chen, C.Y. Zhao, B.X. Wang, Near-field thermal radiative transfer in assembled spherical systems composed of core-shell nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 219, 304–312 (2018) J. Chen, C.Y. Zhao, B.X. Wang, Near-field thermal radiative transfer in assembled spherical systems composed of core-shell nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 219, 304–312 (2018)
176.
go back to reference J.L. Song, Q. Cheng, Z.X. Luo, X.P. Zhou, Z.M. Zhang, Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles. Int. J. Heat Mass Transfer 140, 80–87 (2019) J.L. Song, Q. Cheng, Z.X. Luo, X.P. Zhou, Z.M. Zhang, Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles. Int. J. Heat Mass Transfer 140, 80–87 (2019)
177.
go back to reference B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994) B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994)
178.
go back to reference S. Edalatpour, J. DeSutter, M. Francoeur, Near-field thermal electromagnetic transport: an overview. J. Quant. Spectrosc. Radiat. Transfer 178, 14–21 (2016) S. Edalatpour, J. DeSutter, M. Francoeur, Near-field thermal electromagnetic transport: an overview. J. Quant. Spectrosc. Radiat. Transfer 178, 14–21 (2016)
179.
go back to reference S. Edalatpour, M. Francoeur, Near-field radiative heat transfer between arbitrarily shaped objects and a surface. Phys. Rev. B 94, 045406 (2016) S. Edalatpour, M. Francoeur, Near-field radiative heat transfer between arbitrarily shaped objects and a surface. Phys. Rev. B 94, 045406 (2016)
180.
go back to reference R.M. Abraham Ekeroth, A. Garcia-Martin, J.C. Cuevas, Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems. Phys. Rev. B 95, 235428 (2017) R.M. Abraham Ekeroth, A. Garcia-Martin, J.C. Cuevas, Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems. Phys. Rev. B 95, 235428 (2017)
181.
go back to reference E.G. Cravalho, G.A. Domoto, and C.L. Tien, Measurements of thermal radiation of solids at liquid helium temperatures. in Progress in Aeronautics and Astronautics, J.T. Bevans (ed.), vol. 21, pp. 531–542 (1968); G.A. Domoto, R.F. Boehm, and C.L. Tien, Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transfer 92, 412–417 (1970) E.G. Cravalho, G.A. Domoto, and C.L. Tien, Measurements of thermal radiation of solids at liquid helium temperatures. in Progress in Aeronautics and Astronautics, J.T. Bevans (ed.), vol. 21, pp. 531–542 (1968); G.A. Domoto, R.F. Boehm, and C.L. Tien, Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transfer 92, 412–417 (1970)
182.
go back to reference C.M. Hargreaves, Anomalous radiative transfer between closely-spaced bodies. Phys. Lett. 30A, 491–492 (1969); C.M. Hargreaves, Radiative transfer between closely-spaced bodies. Philips Res. Rep. Suppl. 5, 1–80 (1973) C.M. Hargreaves, Anomalous radiative transfer between closely-spaced bodies. Phys. Lett. 30A, 491–492 (1969); C.M. Hargreaves, Radiative transfer between closely-spaced bodies. Philips Res. Rep. Suppl. 5, 1–80 (1973)
183.
go back to reference A. Kittel, W. Muller-Hirsch, J. Parisi, S.A. Biehs, D. Reddig, M. Holthaus, Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett. 95, 224301 (2005) A. Kittel, W. Muller-Hirsch, J. Parisi, S.A. Biehs, D. Reddig, M. Holthaus, Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett. 95, 224301 (2005)
184.
go back to reference L. Hu, A. Narayanaswamy, X.Y. Chen, G. Chen, Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008) L. Hu, A. Narayanaswamy, X.Y. Chen, G. Chen, Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008)
185.
go back to reference S. Lang, G. Sharma, S. Molesky, P.U. Kränzien, T. Jalas, Z. Jacob, A.Yu. Petrov, M. Eich, Dynamic measurement of near-field radiative heat transfer. Sci. Rep. 7, 13916 (2017) S. Lang, G. Sharma, S. Molesky, P.U. Kränzien, T. Jalas, Z. Jacob, A.Yu. Petrov, M. Eich, Dynamic measurement of near-field radiative heat transfer. Sci. Rep. 7, 13916 (2017)
186.
go back to reference A. Narayanaswamy, S. Shen, G. Chen, Near-field radiative heat transfer between a sphere and a substrate. Phys. Rev. B 78, 115303 (2008) A. Narayanaswamy, S. Shen, G. Chen, Near-field radiative heat transfer between a sphere and a substrate. Phys. Rev. B 78, 115303 (2008)
187.
go back to reference S. Shen, A. Narayanaswamy, G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009) S. Shen, A. Narayanaswamy, G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009)
188.
go back to reference J. Shi, P. Li, B. Liu, S. Shen, Tuning near-field radiation by doped silicon. Appl. Phys. Lett. 102, 183114 (2013) J. Shi, P. Li, B. Liu, S. Shen, Tuning near-field radiation by doped silicon. Appl. Phys. Lett. 102, 183114 (2013)
189.
go back to reference J. Shi, B. Liu, P. Li, P., L. Y. Ng, and S. Shen, Near-field energy extraction with hyperbolic metamaterials. Nano Lett. 15, 1217–1221 (2015) J. Shi, B. Liu, P. Li, P., L. Y. Ng, and S. Shen, Near-field energy extraction with hyperbolic metamaterials. Nano Lett. 15, 1217–1221 (2015)
190.
go back to reference E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, J.-J. Greffet, Radiative heat transfer at the nanoscale. Nat. Photon. 3, 514–517 (2009) E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, J.-J. Greffet, Radiative heat transfer at the nanoscale. Nat. Photon. 3, 514–517 (2009)
191.
go back to reference P.J. Van Zwol, S. Thiele, C. Berger, W.A. De Heer, J. Chevrier, Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon. Phys. Rev. Lett. 109, 264301 (2012) P.J. Van Zwol, S. Thiele, C. Berger, W.A. De Heer, J. Chevrier, Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon. Phys. Rev. Lett. 109, 264301 (2012)
192.
go back to reference P.J. Van Zwol, L. Ranno, J. Chevrier, Tuning near-field radiative heat flux through surface excitations with a metal insulator transition. Phys. Rev. Lett. 108, 234301 (2012) P.J. Van Zwol, L. Ranno, J. Chevrier, Tuning near-field radiative heat flux through surface excitations with a metal insulator transition. Phys. Rev. Lett. 108, 234301 (2012)
193.
go back to reference R.S. Ottens, V. Quetschke, S. Wise, A.A. Alemi, R. Lundock, G. Mueller, D.H. Reitze, D.B. Tanner, B.F. Whiting, Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett. 107, 014301 (2011) R.S. Ottens, V. Quetschke, S. Wise, A.A. Alemi, R. Lundock, G. Mueller, D.H. Reitze, D.B. Tanner, B.F. Whiting, Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett. 107, 014301 (2011)
194.
go back to reference T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, M. Horak, Strong near-field enhancement of radiative heat transfer between metallic surfaces. Phys. Rev. Lett. 109, 224302 (2012) T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, M. Horak, Strong near-field enhancement of radiative heat transfer between metallic surfaces. Phys. Rev. Lett. 109, 224302 (2012)
195.
go back to reference T. Ijiro, N. Yamada, Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Appl. Phys. Lett. 106, 023103 (2015) T. Ijiro, N. Yamada, Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Appl. Phys. Lett. 106, 023103 (2015)
196.
go back to reference K. Ito, A. Miura, H. Iizuka, H. Toshiyoshi, Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Appl. Phys. Lett. 106, 083504 (2015) K. Ito, A. Miura, H. Iizuka, H. Toshiyoshi, Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Appl. Phys. Lett. 106, 083504 (2015)
197.
go back to reference M. Lim, S.S. Lee, B.J. Lee, Near-field thermal radiation between doped silicon plates at nanoscale gaps. Phys. Rev. B 91, 195136 (2015) M. Lim, S.S. Lee, B.J. Lee, Near-field thermal radiation between doped silicon plates at nanoscale gaps. Phys. Rev. B 91, 195136 (2015)
198.
go back to reference J.I. Watjen, B. Zhao, Z.M. Zhang, Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Appl. Phys. Lett. 109, 203112 (2016) J.I. Watjen, B. Zhao, Z.M. Zhang, Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Appl. Phys. Lett. 109, 203112 (2016)
199.
go back to reference M.P. Bernardi, D. Milovich, M. Francoeur, Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nat. Commun. 7, 12900 (2016) M.P. Bernardi, D. Milovich, M. Francoeur, Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nat. Commun. 7, 12900 (2016)
200.
go back to reference J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, Y. Ma, Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nat. Commun. 9, 4033 (2018) J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, Y. Ma, Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nat. Commun. 9, 4033 (2018)
201.
go back to reference X. Ying, P. Sabbaghi, N. Sluder, L.P. Wang, Super-Planckian radiative heat transfer between macroscale surfaces with vacuum gaps down to 190 nm directly created by SU-8 posts and characterized by capacitance method. ACS Photon. 7, 190–196 (2020) X. Ying, P. Sabbaghi, N. Sluder, L.P. Wang, Super-Planckian radiative heat transfer between macroscale surfaces with vacuum gaps down to 190 nm directly created by SU-8 posts and characterized by capacitance method. ACS Photon. 7, 190–196 (2020)
202.
go back to reference M. Ghashami, H. Geng, T. Kim, N. Iacopino, S.K. Cho, K. Park, Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018) M. Ghashami, H. Geng, T. Kim, N. Iacopino, S.K. Cho, K. Park, Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018)
203.
go back to reference J. DeSutter, L. Tang, M. Francoeur, A near-field radiative heat transfer device. Nat. Nanotechnol. 14, 751–755 (2019) J. DeSutter, L. Tang, M. Francoeur, A near-field radiative heat transfer device. Nat. Nanotechnol. 14, 751–755 (2019)
204.
go back to reference C. Feng, Z. Tang, J. Yu, C. Sun, A MEMS device capable of measuring near-field thermal radiation between membranes. Sensors 13, 1998–2010 (2013) C. Feng, Z. Tang, J. Yu, C. Sun, A MEMS device capable of measuring near-field thermal radiation between membranes. Sensors 13, 1998–2010 (2013)
205.
go back to reference R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett. 14, 6971–6975 (2014); R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016) R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett. 14, 6971–6975 (2014); R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016)
206.
go back to reference B. Song, Y. Ganjeh, S. Sadat et al., Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol. 10, 253–258 (2015) B. Song, Y. Ganjeh, S. Sadat et al., Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol. 10, 253–258 (2015)
207.
go back to reference B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, E. Meyhofer, Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509–514 (2016) B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, E. Meyhofer, Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509–514 (2016)
208.
go back to reference A. Fiorino, D. Thompson, L. Zhu, B. Song, P. Reddy, E. Meyhofer, Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces. Nano Lett. 18, 3711–3715 (2018) A. Fiorino, D. Thompson, L. Zhu, B. Song, P. Reddy, E. Meyhofer, Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces. Nano Lett. 18, 3711–3715 (2018)
209.
go back to reference M. Lim, J. Song, S.S. Lee, B.J. Lee, Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018) M. Lim, J. Song, S.S. Lee, B.J. Lee, Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018)
210.
go back to reference L. Worbes, D. Hellmann, A. Kittel, Enhanced near-field heat flow of a monolayer dielectric island. Phys. Rev. Lett. 110, 134302 (2013) L. Worbes, D. Hellmann, A. Kittel, Enhanced near-field heat flow of a monolayer dielectric island. Phys. Rev. Lett. 110, 134302 (2013)
211.
go back to reference A. Jarzembski, C. Shaskey, K. Park, Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Front. Energy 12, 43–71 (2018) A. Jarzembski, C. Shaskey, K. Park, Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Front. Energy 12, 43–71 (2018)
212.
go back to reference K.Y. Fong, H.-K. Li, R. Zhao, S. Yang, Y. Wang, X. Zhang, Phonon heat transfer across a vacuum through quantum fluctuations. Nature 576, 243–247 (2019) K.Y. Fong, H.-K. Li, R. Zhao, S. Yang, Y. Wang, X. Zhang, Phonon heat transfer across a vacuum through quantum fluctuations. Nature 576, 243–247 (2019)
213.
go back to reference A. Jarzembski, T. Tokunaga, J. Crossley, J. Yun, C. Shaskey, R. A. Murdick, I. Park, M. Francoeur, and K. Park, “Force-induced acoustic phonon transport across single-digit nanometre vacuum gaps,” arXiv preprint arXiv:1904.09383, 2019/4/20 A. Jarzembski, T. Tokunaga, J. Crossley, J. Yun, C. Shaskey, R. A. Murdick, I. Park, M. Francoeur, and K. Park, “Force-induced acoustic phonon transport across single-digit nanometre vacuum gaps,” arXiv preprint arXiv:​1904.​09383, 2019/4/20
214.
go back to reference F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–356 (2011) F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–356 (2011)
215.
go back to reference A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, The thermal near-field: Coherence, spectroscopy, heat transfer, and optical forces. Prog. Surface Sci. 88, 349–392 (2013) A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, The thermal near-field: Coherence, spectroscopy, heat transfer, and optical forces. Prog. Surface Sci. 88, 349–392 (2013)
216.
go back to reference A. Babuty, K. Joulain, P.-O. Chapuis, J.-J. Greffet, Y. De Wilde, Blackbody spectrum revisited in the near field. Phys. Rev. Lett. 110, 146103 (2013) A. Babuty, K. Joulain, P.-O. Chapuis, J.-J. Greffet, Y. De Wilde, Blackbody spectrum revisited in the near field. Phys. Rev. Lett. 110, 146103 (2013)
217.
go back to reference R.S. DiMatteo, P. Greiff, S.L. Finberg, K.A. Young-Waithe, H.K.H. Choy, M.M. Masaki, C.G. Fonstad, Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl. Phys. Lett. 79, 1894–1896 (2001) R.S. DiMatteo, P. Greiff, S.L. Finberg, K.A. Young-Waithe, H.K.H. Choy, M.M. Masaki, C.G. Fonstad, Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl. Phys. Lett. 79, 1894–1896 (2001)
218.
go back to reference S. Basu, Y.-B. Chen, Z.M. Zhang, Microscale Radiation in Thermophotovoltaic Devices – A Review. Int. J. Energy Res. 31, 689–716 (2007) S. Basu, Y.-B. Chen, Z.M. Zhang, Microscale Radiation in Thermophotovoltaic Devices – A Review. Int. J. Energy Res. 31, 689–716 (2007)
219.
go back to reference O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Opt. Express 20, A366–A384 (2012) O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Opt. Express 20, A366–A384 (2012)
220.
go back to reference R. Messina, P. Ben-Abdallah, Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci. Rep. 3, 1383 (2013) R. Messina, P. Ben-Abdallah, Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci. Rep. 3, 1383 (2013)
221.
go back to reference S. Jin, M. Lim, S.S. Lee, B.J. Lee, Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap. Opt. Express 24, A635–A649 (2016) S. Jin, M. Lim, S.S. Lee, B.J. Lee, Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap. Opt. Express 24, A635–A649 (2016)
222.
go back to reference T. Inoue, T. Koyama, D.D. Kang, K. Ikeda, T. Asano, S. Noda, One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell. Nano Lett. 19, 3948–3952 (2019) T. Inoue, T. Koyama, D.D. Kang, K. Ikeda, T. Asano, S. Noda, One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell. Nano Lett. 19, 3948–3952 (2019)
223.
go back to reference W.C. Hsu, J.K. Tong, B. Liao, Y. Huang, S.V. Boriskina, G. Chen, Entropic and near-field improvements of thermoradiative cells. Sci. Rep. 6, 34837 (2016) W.C. Hsu, J.K. Tong, B. Liao, Y. Huang, S.V. Boriskina, G. Chen, Entropic and near-field improvements of thermoradiative cells. Sci. Rep. 6, 34837 (2016)
224.
go back to reference C. Lin, B. Wang, K.H. Teo, Z.M. Zhang, Performance comparison between photovoltaic and thermoradiative devices. J. Appl. Phys. 122, 243103 (2017) C. Lin, B. Wang, K.H. Teo, Z.M. Zhang, Performance comparison between photovoltaic and thermoradiative devices. J. Appl. Phys. 122, 243103 (2017)
225.
go back to reference K. Chen, P. Santhanam, S. Sandhu, L. Zhu, S. Fan, Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Phys. Rev. B 91, 134301 (2015) K. Chen, P. Santhanam, S. Sandhu, L. Zhu, S. Fan, Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Phys. Rev. B 91, 134301 (2015)
226.
go back to reference K. Chen, T.P. Xiao, P. Santhanam, E. Yablonovitch, S. Fan, High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell. J. Appl. Phys. 122, 143104 (2017) K. Chen, T.P. Xiao, P. Santhanam, E. Yablonovitch, S. Fan, High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell. J. Appl. Phys. 122, 143104 (2017)
227.
go back to reference C. Lin, B. Wang, K.H. Teo, Z.M. Zhang, A coherent description of thermal radiative devices and its application on the near-field negative electroluminescent cooling. Energy 147, 177–186 (2018) C. Lin, B. Wang, K.H. Teo, Z.M. Zhang, A coherent description of thermal radiative devices and its application on the near-field negative electroluminescent cooling. Energy 147, 177–186 (2018)
228.
go back to reference L. Zhu, A. Fiorino, D. Thompson, R. Mittapally, E. Meyhofer, P. Reddy, Near-field photonic cooling through control of the chemical potential of photons. Nature 566, 239–244 (2019) L. Zhu, A. Fiorino, D. Thompson, R. Mittapally, E. Meyhofer, P. Reddy, Near-field photonic cooling through control of the chemical potential of photons. Nature 566, 239–244 (2019)
229.
go back to reference A. Datasa, R. Vaillonc, Thermionic-enhanced near-field thermophotovoltaics. Nano Energy 61, 10–17 (2019) A. Datasa, R. Vaillonc, Thermionic-enhanced near-field thermophotovoltaics. Nano Energy 61, 10–17 (2019)
230.
go back to reference W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004) W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004)
231.
go back to reference W.A. Challener, C. Peng, A.V. Itagi et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photon. 3, 220–224 (2009) W.A. Challener, C. Peng, A.V. Itagi et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photon. 3, 220–224 (2009)
232.
go back to reference B.C. Stipe, T.C. Strand, C.C. Poon et al., Magnetic recording at 1.5 Pb/m2 using an integrated plasmonic antenna. Nat. Photon. 4, 484–488 (2010) B.C. Stipe, T.C. Strand, C.C. Poon et al., Magnetic recording at 1.5 Pb/m2 using an integrated plasmonic antenna. Nat. Photon. 4, 484–488 (2010)
233.
go back to reference N. Zhou, X. Xu, A.T. Hammack, B.C. Stipe, K. Gao, W. Scholz, E.C. Gage, Plasmonic near-field transducer for heat-assisted magnetic recording. Nanophoton. 3, 141–155 (2014) N. Zhou, X. Xu, A.T. Hammack, B.C. Stipe, K. Gao, W. Scholz, E.C. Gage, Plasmonic near-field transducer for heat-assisted magnetic recording. Nanophoton. 3, 141–155 (2014)
234.
go back to reference P. Ben-Abdallah, S.-A. Biehs, Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013) P. Ben-Abdallah, S.-A. Biehs, Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013)
235.
go back to reference Y. Yang, S. Basu, L. Wang, Radiation-based near-field thermal rectification with phase transition materials. Appl. Phys. Lett. 103, 163101 (2013) Y. Yang, S. Basu, L. Wang, Radiation-based near-field thermal rectification with phase transition materials. Appl. Phys. Lett. 103, 163101 (2013)
236.
go back to reference J.G. Huang, Q. Li, Z.H. Zheng, Y.M. Xuan, Thermal rectification based on thermochromic materials. Int. J. Heat Mass Transfer 67, 575–580 (2013) J.G. Huang, Q. Li, Z.H. Zheng, Y.M. Xuan, Thermal rectification based on thermochromic materials. Int. J. Heat Mass Transfer 67, 575–580 (2013)
237.
go back to reference A. Ghanekar, J. Ji, Y. Zheng, High-rectification near-field thermal diode using phase change periodic nanostructure. Appl. Phys. Lett. 109, 123106 (2016) A. Ghanekar, J. Ji, Y. Zheng, High-rectification near-field thermal diode using phase change periodic nanostructure. Appl. Phys. Lett. 109, 123106 (2016)
238.
go back to reference M. Elzouka, S. Ndao, High temperature near-field nanothermomechanical rectification. Sci. Rep. 7, 44901 (2017) M. Elzouka, S. Ndao, High temperature near-field nanothermomechanical rectification. Sci. Rep. 7, 44901 (2017)
239.
go back to reference A. Fiorino, A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018) A. Fiorino, A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018)
240.
go back to reference Y. Yang, S. Basu, L. Wang, Vacuum thermal switch made of phase transition materials considering thin film and substrate effects. J. Quant. Spectrosc. Radiat. Transfer 158, 69–77 (2015) Y. Yang, S. Basu, L. Wang, Vacuum thermal switch made of phase transition materials considering thin film and substrate effects. J. Quant. Spectrosc. Radiat. Transfer 158, 69–77 (2015)
241.
go back to reference Y. Yang, L. Wang, Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates. J. Quant. Spectrosc. Radiat. Transfer 197, 68–75 (2017) Y. Yang, L. Wang, Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates. J. Quant. Spectrosc. Radiat. Transfer 197, 68–75 (2017)
242.
go back to reference K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, H. Iizuka, Dynamic modulation of radiative heat transfer beyond the blackbody limit. Nano Lett. 17, 4347–4353 (2017) K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, H. Iizuka, Dynamic modulation of radiative heat transfer beyond the blackbody limit. Nano Lett. 17, 4347–4353 (2017)
243.
go back to reference G.T. Papadakis, B. Zhao, S. Buddhiraju, S. Fan, Gate-tunable near-field heat transfer. ACS Photon. 6, 709–719 (2019) G.T. Papadakis, B. Zhao, S. Buddhiraju, S. Fan, Gate-tunable near-field heat transfer. ACS Photon. 6, 709–719 (2019)
244.
go back to reference N.H. Thomas, M.C. Sherrott, J. Broulliet, H.A. Atwater, A.J. Minnich, Electronic modulation of near-field radiative transfer in graphene field effect heterostructures. Nano Lett. 19, 3898–3904 (2019) N.H. Thomas, M.C. Sherrott, J. Broulliet, H.A. Atwater, A.J. Minnich, Electronic modulation of near-field radiative transfer in graphene field effect heterostructures. Nano Lett. 19, 3898–3904 (2019)
245.
go back to reference P. Ben-Abdallah, S.-A. Biehs, Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014) P. Ben-Abdallah, S.-A. Biehs, Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014)
246.
go back to reference Z.H. Zheng, Y.M. Xuan, Enhancement or suppression of the near-field radiative heat transfer between two materials. Nanoscale Microscale Thermophys. Eng. 15, 237–251 (2011) Z.H. Zheng, Y.M. Xuan, Enhancement or suppression of the near-field radiative heat transfer between two materials. Nanoscale Microscale Thermophys. Eng. 15, 237–251 (2011)
247.
go back to reference R. Messina, M. Antezza, P. Ben-Abdallah, Three-body amplification of photon heat tunneling. Phys. Rev. Lett. 109, 244302 (2012) R. Messina, M. Antezza, P. Ben-Abdallah, Three-body amplification of photon heat tunneling. Phys. Rev. Lett. 109, 244302 (2012)
248.
go back to reference B. Liu, Y. Liu, S. Shen, Thermal plasmonic interconnnects in graphene. Phys. Rev. B 90, 195411 (2014) B. Liu, Y. Liu, S. Shen, Thermal plasmonic interconnnects in graphene. Phys. Rev. B 90, 195411 (2014)
249.
go back to reference W. Gu, G.-H. Tang, W.-Q. Tao, Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. Int. J. Heat Mass Transfer 82, 429–434 (2015) W. Gu, G.-H. Tang, W.-Q. Tao, Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. Int. J. Heat Mass Transfer 82, 429–434 (2015)
250.
go back to reference A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, Y. Zheng, Near-field thermal rectification devices using phase change periodic nanostructure. Opt. Express 26, A209–A218 (2018) A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, Y. Zheng, Near-field thermal rectification devices using phase change periodic nanostructure. Opt. Express 26, A209–A218 (2018)
251.
go back to reference Y.H. Kan, C.Y. Zhao, Z.M. Zhang, Near-field radiative heat transfer in three-body systems with periodic structures. Phys. Rev. B 99, 035433 (2019); ibid, Enhancement and manipulation of near-field radiative heat transfer using an intermediate modulator. Phys. Rev. Appl. 13, 014069 (2020) Y.H. Kan, C.Y. Zhao, Z.M. Zhang, Near-field radiative heat transfer in three-body systems with periodic structures. Phys. Rev. B 99, 035433 (2019); ibid, Enhancement and manipulation of near-field radiative heat transfer using an intermediate modulator. Phys. Rev. Appl. 13, 014069 (2020)
252.
go back to reference D. Thompson, L. Zhu, E. Meyhofer, and P. Reddy, Nanoscale radiative thermal switching via multi-body effects. Nat. Nanotechnol. 15, 99–104 (2020) D. Thompson, L. Zhu, E. Meyhofer, and P. Reddy, Nanoscale radiative thermal switching via multi-body effects. Nat. Nanotechnol. 15, 99–104 (2020)
253.
go back to reference V. Kubytskyi, S.-A. Biehs, P. Ben-Abdallah, Radiative bistability and thermal memory. Phys. Rev. Lett. 113, 074301 (2014) V. Kubytskyi, S.-A. Biehs, P. Ben-Abdallah, Radiative bistability and thermal memory. Phys. Rev. Lett. 113, 074301 (2014)
254.
go back to reference S.A. Dyakov, J. Dai, M. Yan, M. Qiu, Near field thermal memory based on radiativephase bistability of VO2. J. Phys. D Appl. Phys. 48, 305104 (2015) S.A. Dyakov, J. Dai, M. Yan, M. Qiu, Near field thermal memory based on radiativephase bistability of VO2. J. Phys. D Appl. Phys. 48, 305104 (2015)
255.
go back to reference K. Ito, K. Nishikawa, H. Iizuka, Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide. Appl. Phys. Lett. 108, 053507 (2016) K. Ito, K. Nishikawa, H. Iizuka, Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide. Appl. Phys. Lett. 108, 053507 (2016)
256.
go back to reference J. Ordonez-Miranda, Y. Ezzahri, J.A. Tiburcio-Moreno, K. Joulain, J. Drevillon, Radiative thermal memristor. Phys. Rev. Lett. 123, 025901 (2019) J. Ordonez-Miranda, Y. Ezzahri, J.A. Tiburcio-Moreno, K. Joulain, J. Drevillon, Radiative thermal memristor. Phys. Rev. Lett. 123, 025901 (2019)
257.
go back to reference S.J. Byrnes, R. Blanchard, F. Capasso, Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Nat. Acad. of Sci. (PNAS) 111, 3927–3932 (2014) S.J. Byrnes, R. Blanchard, F. Capasso, Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Nat. Acad. of Sci. (PNAS) 111, 3927–3932 (2014)
258.
go back to reference R. Strandberg, Theoretical efficiency limits for thermoradiative energy conversion. J. Appl. Phys. 117, 055105 (2015) R. Strandberg, Theoretical efficiency limits for thermoradiative energy conversion. J. Appl. Phys. 117, 055105 (2015)
259.
go back to reference P. Santhanam, S. Fan, Thermal-to-electrical energy conversion by diodes under negative illumination. Phys. Rev. B 93, 161410(R) (2016) P. Santhanam, S. Fan, Thermal-to-electrical energy conversion by diodes under negative illumination. Phys. Rev. B 93, 161410(R) (2016)
260.
go back to reference P. Wurfel, The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967–3985 (1982) P. Wurfel, The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967–3985 (1982)
261.
go back to reference S.-T. Yen, K.-C. Lee, Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation. J. Appl. Phys. 107, 054513 (2010) S.-T. Yen, K.-C. Lee, Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation. J. Appl. Phys. 107, 054513 (2010)
262.
go back to reference K. Chen, P. Santhanam, S. Fan, Near-field enhanced negative luminescent refrigeration. Phys. Rev. Appl. 6, 024014 (2016) K. Chen, P. Santhanam, S. Fan, Near-field enhanced negative luminescent refrigeration. Phys. Rev. Appl. 6, 024014 (2016)
263.
go back to reference D. Feng, E.J. Tervo, S.K. Yee, Z.M. Zhang, Effect of evanescent waves on the dark current of thermophotovoltaic cells. Nanoscale Microscale Thermophys. Eng. 24, 1–19 (2020) D. Feng, E.J. Tervo, S.K. Yee, Z.M. Zhang, Effect of evanescent waves on the dark current of thermophotovoltaic cells. Nanoscale Microscale Thermophys. Eng. 24, 1–19 (2020)
Metadata
Title
Near-Field Energy Transfer
Author
Zhuomin M. Zhang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45039-7_10

Premium Partners