Skip to main content
Top

2022 | OriginalPaper | Chapter

3. Near-Infrared-to-Visible Photon Upconversion

Authors : Yoichi Sasaki, Nobuhiro Yanai, Nobuo Kimizuka

Published in: Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the promising methods to overcome the Shockley-Queisser limit in solar energy conversion is triplet-triplet annihilation-based photon upconversion (TTA-UC) from near-infrared (NIR,  > 700 nm) light to visible (Vis,  < 700 nm) light. However, it had been difficult to achieve efficient NIR-to-Vis TTA-UC mainly due to the absence of appropriate triplet sensitizers with less or no energy loss associated with intersystem crossing (ISC). In this chapter, we overview recent successful examples of NIR-to-Vis TTA-UC based on the developments of new NIR-absorbing triplet sensitizers, such as semiconductor nanocrystals with small singlet-triplet exchange splitting and Os complexes with direct singlet-to-triplet (S-T) absorption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRef T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRef
2.
go back to reference S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum. New J. Phys. 10(1), 013007 (2008)CrossRef S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum. New J. Phys. 10(1), 013007 (2008)CrossRef
3.
go back to reference N.J. Ekins-Daukes, T.W. Schmidt, A molecular approach to the intermediate band solar cell: the symmetric case. Appl. Phys. Lett. 93, 063507 (2008)CrossRef N.J. Ekins-Daukes, T.W. Schmidt, A molecular approach to the intermediate band solar cell: the symmetric case. Appl. Phys. Lett. 93, 063507 (2008)CrossRef
4.
go back to reference S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97(14), 143903 (2006)CrossRef S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97(14), 143903 (2006)CrossRef
5.
go back to reference T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21–22), 2560–2573 (2010)CrossRef T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21–22), 2560–2573 (2010)CrossRef
6.
go back to reference J. Zhao, S. Ji, H. Guo, Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1(6), 937–950 (2011)CrossRef J. Zhao, S. Ji, H. Guo, Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1(6), 937–950 (2011)CrossRef
7.
go back to reference Y.C. Simon, C. Weder, Low-power photon upconversion through triplet-triplet annihilation in polymers. J. Mater. Chem. 22(39), 20817–20830 (2012)CrossRef Y.C. Simon, C. Weder, Low-power photon upconversion through triplet-triplet annihilation in polymers. J. Mater. Chem. 22(39), 20817–20830 (2012)CrossRef
8.
go back to reference A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14(13), 4322–4332 (2012)CrossRef A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14(13), 4322–4332 (2012)CrossRef
9.
go back to reference V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362(1), 54–71 (2018)CrossRef V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362(1), 54–71 (2018)CrossRef
10.
go back to reference J.C. Wang, S.P. Hill, T. Dilbeck, O.O. Ogunsolu, T. Banerjee, K. Hanson, Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev. 47(1), 104–148 (2018)CrossRef J.C. Wang, S.P. Hill, T. Dilbeck, O.O. Ogunsolu, T. Banerjee, K. Hanson, Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev. 47(1), 104–148 (2018)CrossRef
11.
go back to reference T.F. Schulze, T.W. Schmidt, Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8(1), 103–125 (2015)CrossRef T.F. Schulze, T.W. Schmidt, Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8(1), 103–125 (2015)CrossRef
12.
go back to reference Z. Huang, X. Li, M. Mahboub, K.M. Hanson, V.M. Nichols, H. Le, M.L. Tang, C.J. Bardeen, Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15(8), 5552–5557 (2015)CrossRef Z. Huang, X. Li, M. Mahboub, K.M. Hanson, V.M. Nichols, H. Le, M.L. Tang, C.J. Bardeen, Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15(8), 5552–5557 (2015)CrossRef
13.
go back to reference R. Younts, H.-S. Duan, B. Gautam, B. Saparov, J. Liu, C. Mongin, F.N. Castellano, D.B. Mitzi, K. Gundogdu, Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29(9), 1604278 (2017)CrossRef R. Younts, H.-S. Duan, B. Gautam, B. Saparov, J. Liu, C. Mongin, F.N. Castellano, D.B. Mitzi, K. Gundogdu, Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29(9), 1604278 (2017)CrossRef
14.
go back to reference K. Mase, K. Okumura, N. Yanai, N. Kimizuka, Triplet sensitization by perovskite nanocrystals for photon upconversion. Chem. Commun. 53(59), 8261–8264 (2017)CrossRef K. Mase, K. Okumura, N. Yanai, N. Kimizuka, Triplet sensitization by perovskite nanocrystals for photon upconversion. Chem. Commun. 53(59), 8261–8264 (2017)CrossRef
15.
go back to reference L. Nienhaus, J.-P. Correa-Baena, S. Wieghold, M. Einzinger, T.-A. Lin, K.E. Shulenberger, N.D. Klein, M. Wu, V. Bulović, T. Buonassisi, M.A. Baldo, M.G. Bawendi, Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion. ACS Energy Lett. 4(4), 888–895 (2019)CrossRef L. Nienhaus, J.-P. Correa-Baena, S. Wieghold, M. Einzinger, T.-A. Lin, K.E. Shulenberger, N.D. Klein, M. Wu, V. Bulović, T. Buonassisi, M.A. Baldo, M.G. Bawendi, Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion. ACS Energy Lett. 4(4), 888–895 (2019)CrossRef
16.
go back to reference S. Amemori, Y. Sasaki, N. Yanai, N. Kimizuka, Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0-T1 absorption. J. Am. Chem. Soc. 138(28), 8702–8705 (2016)CrossRef S. Amemori, Y. Sasaki, N. Yanai, N. Kimizuka, Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0-T1 absorption. J. Am. Chem. Soc. 138(28), 8702–8705 (2016)CrossRef
17.
go back to reference M. Wu, D.N. Congreve, M.W.B. Wilson, J. Jean, N. Geva, M. Welborn, T.V. Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10(1), 31–34 (2015)CrossRef M. Wu, D.N. Congreve, M.W.B. Wilson, J. Jean, N. Geva, M. Welborn, T.V. Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10(1), 31–34 (2015)CrossRef
18.
go back to reference C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351(6271), 369–372 (2016)CrossRef C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351(6271), 369–372 (2016)CrossRef
19.
go back to reference M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16(11), 7169–7175 (2016)CrossRef M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16(11), 7169–7175 (2016)CrossRef
20.
go back to reference L. Nienhaus, M. Wu, N. Geva, J.J. Shepherd, M.W.B. Wilson, V. Bulović, T.V. Voorhis, M.A. Baldo, M.G. Bawendi, Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion. ACS Nano 11(8), 7848–7857 (2017)CrossRef L. Nienhaus, M. Wu, N. Geva, J.J. Shepherd, M.W.B. Wilson, V. Bulović, T.V. Voorhis, M.A. Baldo, M.G. Bawendi, Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion. ACS Nano 11(8), 7848–7857 (2017)CrossRef
21.
go back to reference X. Luo, R. Lai, Y. Li, Y. Han, G. Liang, X. Liu, T. Ding, J. Wang, K. Wu, Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 141(10), 4186–4190 (2019)CrossRef X. Luo, R. Lai, Y. Li, Y. Han, G. Liang, X. Liu, T. Ding, J. Wang, K. Wu, Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 141(10), 4186–4190 (2019)CrossRef
22.
go back to reference S. Wieghold, A.S. Bieber, Z.A. VanOrman, L. Daley, M. Leger, J.-P. Correa-Baena, L. Nienhaus, Triplet sensitization by lead halide perovskite thin films for efficient solid-state photon upconversion at subsolar fluxes. Matter 1(3), 705–719 (2019)CrossRef S. Wieghold, A.S. Bieber, Z.A. VanOrman, L. Daley, M. Leger, J.-P. Correa-Baena, L. Nienhaus, Triplet sensitization by lead halide perovskite thin films for efficient solid-state photon upconversion at subsolar fluxes. Matter 1(3), 705–719 (2019)CrossRef
23.
go back to reference Y. Sasaki, M. Oshikawa, P. Bharmoria, H. Kouno, A. Hayashi-Takagi, M. Sato, I. Ajioka, N. Yanai, N. Kimizuka, Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew. Chem. Int. Ed. 58(49), 17827–17833 (2019)CrossRef Y. Sasaki, M. Oshikawa, P. Bharmoria, H. Kouno, A. Hayashi-Takagi, M. Sato, I. Ajioka, N. Yanai, N. Kimizuka, Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew. Chem. Int. Ed. 58(49), 17827–17833 (2019)CrossRef
24.
go back to reference B. Joarder, A. Mallick, Y. Sasaki, M. Kinoshita, R. Haruki, Y. Kawashima, N. Yanai, N. Kimizuka, Near-infrared-to-visible photon upconversion by introducing an S-T absorption sensitizer into a metal-organic framework. ChemNanoMat 6(6), 1–5 (2020) B. Joarder, A. Mallick, Y. Sasaki, M. Kinoshita, R. Haruki, Y. Kawashima, N. Yanai, N. Kimizuka, Near-infrared-to-visible photon upconversion by introducing an S-T absorption sensitizer into a metal-organic framework. ChemNanoMat 6(6), 1–5 (2020)
25.
go back to reference S. Chan, M. Liu, K. Latham, M. Haruta, H. Kurata, T. Teranishi, Y. Tachibana, Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J. Mater. Chem. C 5(8), 2182–2187 (2017)CrossRef S. Chan, M. Liu, K. Latham, M. Haruta, H. Kurata, T. Teranishi, Y. Tachibana, Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J. Mater. Chem. C 5(8), 2182–2187 (2017)CrossRef
26.
go back to reference M. Tabachnyk, B. Ehrler, S. Gélinas, M.L. Böhm, B.J. Walker, K.P. Musselman, N.C. Greenham, R.H. Friend, A. Rao, Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13(11), 1033–1038 (2014)CrossRef M. Tabachnyk, B. Ehrler, S. Gélinas, M.L. Böhm, B.J. Walker, K.P. Musselman, N.C. Greenham, R.H. Friend, A. Rao, Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13(11), 1033–1038 (2014)CrossRef
27.
go back to reference N.J. Thompson, M.W.B. Wilson, D.N. Congreve, P.R. Brown, J.M. Scherer, T.S. Bischof, M. Wu, N. Geva, M. Welborn, T.V. Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13(11), 1039–1043 (2014)CrossRef N.J. Thompson, M.W.B. Wilson, D.N. Congreve, P.R. Brown, J.M. Scherer, T.S. Bischof, M. Wu, N. Geva, M. Welborn, T.V. Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13(11), 1039–1043 (2014)CrossRef
28.
go back to reference J.H. Kim, C.Y. Wong, G.D. Scholes, Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42(8), 1037–1046 (2009)CrossRef J.H. Kim, C.Y. Wong, G.D. Scholes, Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42(8), 1037–1046 (2009)CrossRef
29.
go back to reference Z. Huang, M.L. Tang, Semiconductor nanocrystal light absorbers for photon upconversion. J. Phys. Chem. Lett. 9(21), 6198–6206 (2018)CrossRef Z. Huang, M.L. Tang, Semiconductor nanocrystal light absorbers for photon upconversion. J. Phys. Chem. Lett. 9(21), 6198–6206 (2018)CrossRef
30.
go back to reference B.L. Wehrenberg, C. Wang, P. Guyot-Sionnest, Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 106(41), 10634–10640 (2002)CrossRef B.L. Wehrenberg, C. Wang, P. Guyot-Sionnest, Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 106(41), 10634–10640 (2002)CrossRef
31.
go back to reference T.N. Singh-Rachford, F.N. Castellano, Triplet sensitized red-to-blue photon upconversion. J. Phys. Chem. Lett. 1(1), 195–200 (2010)CrossRef T.N. Singh-Rachford, F.N. Castellano, Triplet sensitized red-to-blue photon upconversion. J. Phys. Chem. Lett. 1(1), 195–200 (2010)CrossRef
32.
go back to reference X. Li, Z. Huang, R. Zavala, M.L. Tang, Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 7(11), 1955–1959 (2016)CrossRef X. Li, Z. Huang, R. Zavala, M.L. Tang, Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 7(11), 1955–1959 (2016)CrossRef
33.
go back to reference C. Mongin, P. Moroz, M. Zamkov, F.N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10(2), 225–230 (2018)CrossRef C. Mongin, P. Moroz, M. Zamkov, F.N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10(2), 225–230 (2018)CrossRef
34.
go back to reference W.E. Ford, M.A.J. Rodgers, Reversible triplet-triplet energy transfer within a covalently linked bichromophoric molecule. J. Phys. Chem. 96(7), 2917–2920 (1992)CrossRef W.E. Ford, M.A.J. Rodgers, Reversible triplet-triplet energy transfer within a covalently linked bichromophoric molecule. J. Phys. Chem. 96(7), 2917–2920 (1992)CrossRef
35.
go back to reference D.S. Tyson, F.N. Castellano, Intramolecular singlet and triplet energy transfer in a ruthenium(II) diimine complex containing multiple pyrenyl chromophores. J. Phys. Chem. A 103, 10955–10960 (1999)CrossRef D.S. Tyson, F.N. Castellano, Intramolecular singlet and triplet energy transfer in a ruthenium(II) diimine complex containing multiple pyrenyl chromophores. J. Phys. Chem. A 103, 10955–10960 (1999)CrossRef
36.
go back to reference X.-y. Wang, A.D. Guerzo, R.H. Schmehl, Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states. J. Photochem. Photobiol. C 5(1), 55–77 (2004)CrossRef X.-y. Wang, A.D. Guerzo, R.H. Schmehl, Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states. J. Photochem. Photobiol. C 5(1), 55–77 (2004)CrossRef
37.
go back to reference N.D. McClenaghan, Y. Leydet, B. Maubert, M.T. Indelli, S. Campagna, Excited-state equilibration: a process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular systems. Coord. Chem. Rev. 249(13–14), 1336–1350 (2005)CrossRef N.D. McClenaghan, Y. Leydet, B. Maubert, M.T. Indelli, S. Campagna, Excited-state equilibration: a process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular systems. Coord. Chem. Rev. 249(13–14), 1336–1350 (2005)CrossRef
38.
go back to reference M.L. Rosa, S.A. Denisov, G. Jonusauskas, N.D. McClenaghan, A. Credi, Designed long-lived emission from CdSe quantum dots through reversible electronic energy transfer with a surface-bound chromophore. Angew. Chem. Int. Ed. 57(12), 3104–3107 (2018)CrossRef M.L. Rosa, S.A. Denisov, G. Jonusauskas, N.D. McClenaghan, A. Credi, Designed long-lived emission from CdSe quantum dots through reversible electronic energy transfer with a surface-bound chromophore. Angew. Chem. Int. Ed. 57(12), 3104–3107 (2018)CrossRef
39.
go back to reference X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)CrossRef X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)CrossRef
40.
go back to reference J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125(41), 12567–12575 (2003)CrossRef J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125(41), 12567–12575 (2003)CrossRef
41.
go back to reference K. Okumura, K. Mase, N. Yanai, N. Kimizuka, Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22(23), 7721–7726 (2016)CrossRef K. Okumura, K. Mase, N. Yanai, N. Kimizuka, Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22(23), 7721–7726 (2016)CrossRef
42.
go back to reference M. Mahboub, P. Xia, J.V. Baren, X. Li, C.H. Lui, M.L. Tang, Midgap states in PbS quantum dots induced by Cd and Zn enhance photon upconversion. ACS Energy Lett. 3(4), 767–772 (2018)CrossRef M. Mahboub, P. Xia, J.V. Baren, X. Li, C.H. Lui, M.L. Tang, Midgap states in PbS quantum dots induced by Cd and Zn enhance photon upconversion. ACS Energy Lett. 3(4), 767–772 (2018)CrossRef
43.
go back to reference M.P. Hendricks, M.P. Campos, G.T. Cleveland, I.J.-L. Plante, J.S. Owen, A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348(6240), 1226–1230 (2015)CrossRef M.P. Hendricks, M.P. Campos, G.T. Cleveland, I.J.-L. Plante, J.S. Owen, A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348(6240), 1226–1230 (2015)CrossRef
44.
go back to reference Z. Huang, Z. Xu, M. Mahboub, Z. Liang, P. Jaimes, P. Xia, K.R. Graham, M.L. Tang, T. Lian, Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers. J. Am. Chem. Soc. 141(25), 9769–9772 (2019)CrossRef Z. Huang, Z. Xu, M. Mahboub, Z. Liang, P. Jaimes, P. Xia, K.R. Graham, M.L. Tang, T. Lian, Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers. J. Am. Chem. Soc. 141(25), 9769–9772 (2019)CrossRef
45.
go back to reference K. Miyata, Y. Kurashige, K. Watanabe, T. Sugimoto, S. Takahashi, S. Tanaka, J. Takeya, T. Yanai, Y. Matsumoto, Coherent singlet fission activated by symmetry breaking. Nat. Chem. 9(10), 983 (2017)CrossRef K. Miyata, Y. Kurashige, K. Watanabe, T. Sugimoto, S. Takahashi, S. Tanaka, J. Takeya, T. Yanai, Y. Matsumoto, Coherent singlet fission activated by symmetry breaking. Nat. Chem. 9(10), 983 (2017)CrossRef
46.
go back to reference M. Wu, J. Jean, V. Bulović, M.A. Baldo, Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals. Appl. Phys. Lett. 110(21), 211101 (2017)CrossRef M. Wu, J. Jean, V. Bulović, M.A. Baldo, Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals. Appl. Phys. Lett. 110(21), 211101 (2017)CrossRef
47.
go back to reference M. Oldenburg, A. Turshatov, D. Busko, M. Jakoby, R. Haldar, K. Chen, G. Emandi, M.O. Senge, C. Wöll, J.M. Hodgkiss, B.S. Richards, I.A. Howard, Enhancing the photoluminescence of surface anchored metal-organic frameworks: mixed linkers and efficient acceptors. Phys. Chem. Chem. Phys. 20(17), 11564–11576 (2018)CrossRef M. Oldenburg, A. Turshatov, D. Busko, M. Jakoby, R. Haldar, K. Chen, G. Emandi, M.O. Senge, C. Wöll, J.M. Hodgkiss, B.S. Richards, I.A. Howard, Enhancing the photoluminescence of surface anchored metal-organic frameworks: mixed linkers and efficient acceptors. Phys. Chem. Chem. Phys. 20(17), 11564–11576 (2018)CrossRef
48.
go back to reference J. Park, M. Xu, F. Li, H.-C. Zhou, 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 140(16), 5493–5499 (2018)CrossRef J. Park, M. Xu, F. Li, H.-C. Zhou, 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 140(16), 5493–5499 (2018)CrossRef
49.
go back to reference J.M. Rowe, J. Zhu, E.M. Soderstrom, W. Xu, A. Yakovenko, A.J. Morris, Sensitized photon upconversion in anthracene-based zirconium metal–organic frameworks. Chem. Commun. 54(56), 7798–7801 (2018)CrossRef J.M. Rowe, J. Zhu, E.M. Soderstrom, W. Xu, A. Yakovenko, A.J. Morris, Sensitized photon upconversion in anthracene-based zirconium metal–organic frameworks. Chem. Commun. 54(56), 7798–7801 (2018)CrossRef
50.
go back to reference F. Meinardi, M. Ballabio, N. Yanai, N. Kimizuka, A. Bianchi, M. Mauri, R. Simonutti, A. Ronchi, M. Campione, A. Monguzzi, Quasi-thresholdless photon upconversion in metal–organic framework nanocrystals. Nano Lett. 19(3), 2169–2177 (2019)CrossRef F. Meinardi, M. Ballabio, N. Yanai, N. Kimizuka, A. Bianchi, M. Mauri, R. Simonutti, A. Ronchi, M. Campione, A. Monguzzi, Quasi-thresholdless photon upconversion in metal–organic framework nanocrystals. Nano Lett. 19(3), 2169–2177 (2019)CrossRef
51.
go back to reference S. Amemori, R.K. Gupta, M.L. Böhm, J. Xiao, U. Huynh, T. Oyama, K. Kaneko, A. Rao, N. Yanai, N. Kimizuka, Hybridizing semiconductor nanocrystals with metal–organic frameworks for visible and near-infrared photon upconversion. Dalton Trans. 47(26), 8590–8594 (2018)CrossRef S. Amemori, R.K. Gupta, M.L. Böhm, J. Xiao, U. Huynh, T. Oyama, K. Kaneko, A. Rao, N. Yanai, N. Kimizuka, Hybridizing semiconductor nanocrystals with metal–organic frameworks for visible and near-infrared photon upconversion. Dalton Trans. 47(26), 8590–8594 (2018)CrossRef
52.
go back to reference A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRef
53.
go back to reference J. Calabrese, N.L. Jones, R.L. Harlow, N. Herron, D.L. Thorn, Y. Wang, Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 113(6), 2328–2330 (1991)CrossRef J. Calabrese, N.L. Jones, R.L. Harlow, N. Herron, D.L. Thorn, Y. Wang, Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 113(6), 2328–2330 (1991)CrossRef
54.
go back to reference M. Era, K. Maeda, T. Tsutsui, Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organic–inorganic superlattice structure. Chem. Phys. Lett. 296(3–4), 417–420 (1998)CrossRef M. Era, K. Maeda, T. Tsutsui, Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organic–inorganic superlattice structure. Chem. Phys. Lett. 296(3–4), 417–420 (1998)CrossRef
55.
go back to reference K. Ema, M. Inomata, Y. Kato, H. Kunugita, M. Era, Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials. Phys. Rev. Lett. 100(25), 257401 (2008)CrossRef K. Ema, M. Inomata, Y. Kato, H. Kunugita, M. Era, Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials. Phys. Rev. Lett. 100(25), 257401 (2008)CrossRef
56.
go back to reference K. Okumura, N. Yanai, N. Kimizuka, Visible-to-UV photon upconversion sensitized by Lead halide perovskite nanocrystals. Chem. Lett. 48(11), 1347–1350 (2019)CrossRef K. Okumura, N. Yanai, N. Kimizuka, Visible-to-UV photon upconversion sensitized by Lead halide perovskite nanocrystals. Chem. Lett. 48(11), 1347–1350 (2019)CrossRef
57.
go back to reference J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L.D. Cola, L. Flamigni, Ruthenium (II) and osmium (II) bis (terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chem. Rev. 94(4), 993–1019 (1994)CrossRef J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L.D. Cola, L. Flamigni, Ruthenium (II) and osmium (II) bis (terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chem. Rev. 94(4), 993–1019 (1994)CrossRef
58.
go back to reference S. Altobello, R. Argazzi, S. Caramori, C. Contado, S.D. Fré, P. Rubino, C. Choné, G. Larramona, C.A. Bignozzi, Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 127(44), 15342–15343 (2005)CrossRef S. Altobello, R. Argazzi, S. Caramori, C. Contado, S.D. Fré, P. Rubino, C. Choné, G. Larramona, C.A. Bignozzi, Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 127(44), 15342–15343 (2005)CrossRef
59.
go back to reference T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo, H. Segawa, Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J. Phys. Chem. Lett. 3(3), 394–398 (2012)CrossRef T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo, H. Segawa, Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J. Phys. Chem. Lett. 3(3), 394–398 (2012)CrossRef
60.
go back to reference X. Zhang, S.E. Canton, G. Smolentsev, C.-J. Wallentin, Y. Liu, Q. Kong, K. Attenkofer, A.B. Stickrath, M.W. Mara, L.X. Chen, K. Wärnmark, V. Sundström, Highly accurate excited-state structure of [Os(bpy)2dcbpy]2+ determined by X-ray transient absorption spectroscopy. J. Am. Chem. Soc. 136(24), 8804–8809 (2014)CrossRef X. Zhang, S.E. Canton, G. Smolentsev, C.-J. Wallentin, Y. Liu, Q. Kong, K. Attenkofer, A.B. Stickrath, M.W. Mara, L.X. Chen, K. Wärnmark, V. Sundström, Highly accurate excited-state structure of [Os(bpy)2dcbpy]2+ determined by X-ray transient absorption spectroscopy. J. Am. Chem. Soc. 136(24), 8804–8809 (2014)CrossRef
61.
go back to reference Y. Sasaki, S. Amemori, H. Kouno, N. Yanai, N. Kimizuka, Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J. Mater. Chem. C 5(21), 5063–5067 (2017)CrossRef Y. Sasaki, S. Amemori, H. Kouno, N. Yanai, N. Kimizuka, Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J. Mater. Chem. C 5(21), 5063–5067 (2017)CrossRef
62.
go back to reference D. Liu, Y. Zhao, Z. Wang, K. Xu, J. Zhao, Exploiting the benefit of S0→T1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(II) complex. Dalton Trans. 47(26), 8619–8628 (2018)CrossRef D. Liu, Y. Zhao, Z. Wang, K. Xu, J. Zhao, Exploiting the benefit of S0→T1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(II) complex. Dalton Trans. 47(26), 8619–8628 (2018)CrossRef
63.
go back to reference Y.Y. Cheng, B. Fückel, T. Khoury, R.G.C.R. Clady, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Entropically driven photochemical upconversion. J. Phys. Chem. A 115(6), 1047–1053 (2011)CrossRef Y.Y. Cheng, B. Fückel, T. Khoury, R.G.C.R. Clady, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Entropically driven photochemical upconversion. J. Phys. Chem. A 115(6), 1047–1053 (2011)CrossRef
64.
go back to reference N. Yanai, N. Kimizuka, New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50(10), 2487–2495 (2017)CrossRef N. Yanai, N. Kimizuka, New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50(10), 2487–2495 (2017)CrossRef
Metadata
Title
Near-Infrared-to-Visible Photon Upconversion
Authors
Yoichi Sasaki
Nobuhiro Yanai
Nobuo Kimizuka
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_3