Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Necessary and Sufficient Conditions for Strong Stability of Explicit Runge–Kutta Methods

Authors : Franz Achleitner, Anton Arnold, Ansgar Jüngel

Published in: From Particle Systems to Partial Differential Equations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Strong stability is a property of time integration schemes for ODEs that preserve temporal monotonicity of solutions in arbitrary (inner product) norms. It is proved that explicit Runge–Kutta schemes of order \(p\in 4{\mathbb {N}}\) with \(s=p\) stages for linear autonomous ODE systems are not strongly stable, closing an open stability question from [Z. Sun and C.-W. Shu, SIAM J. Numer. Anal. 57 (2019), 1158–1182]. Furthermore, for explicit Runge–Kutta methods of order \(p\in {\mathbb {N}}\) and \(s>p\) stages, we prove several sufficient as well as necessary conditions for a less restrictive notion of strong stability. These conditions involve both the stability function and the hypocoercivity index of the ODE system matrix. This index is a structural property combining the Hermitian and skew-Hermitian part of the system matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Achleitner, F., Arnold, A., Carlen, E.: On multi-dimensional hypocoercive BGK models. Kinet. Relat. Models 11, 953–1009 (2018)MathSciNetCrossRef Achleitner, F., Arnold, A., Carlen, E.: On multi-dimensional hypocoercive BGK models. Kinet. Relat. Models 11, 953–1009 (2018)MathSciNetCrossRef
2.
go back to reference Achleitner, F., Arnold, A., Carlen, E.A.: The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. J. Differ. Equ. 371, 83–115 (2023)MathSciNetCrossRef Achleitner, F., Arnold, A., Carlen, E.A.: The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. J. Differ. Equ. 371, 83–115 (2023)MathSciNetCrossRef
3.
go back to reference F. Achleitner, A. Arnold, and A. Jüngel. Hypocoercivity for Linear ODEs and Strong Stability for Runge–Kutta Methods. arXiv preprint arXiv:2310.19758, (2023) F. Achleitner, A. Arnold, and A. Jüngel. Hypocoercivity for Linear ODEs and Strong Stability for Runge–Kutta Methods. arXiv preprint arXiv:​2310.​19758, (2023)
4.
go back to reference Achleitner, F., Arnold, A., Mehrmann, V.: Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations. Z. Angew. Math. Mech. 103, e202100171, 30 pages (2023) Achleitner, F., Arnold, A., Mehrmann, V.: Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations. Z. Angew. Math. Mech. 103, e202100171, 30 pages (2023)
6.
go back to reference Bernstein, D.S.: Scalar, Vector, and Matrix Mathematics. Theory, Facts, And Formulas. Revised and expanded edition. Princeton University Press, Princeton, NJ (2018) Bernstein, D.S.: Scalar, Vector, and Matrix Mathematics. Theory, Facts, And Formulas. Revised and expanded edition. Princeton University Press, Princeton, NJ (2018)
7.
go back to reference Conda, S., Gottlieb, S., Grant, Z.J., Shadid, J.N.: Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order. J. Sci. Comput. 73, 667–690 (2017)MathSciNetCrossRef Conda, S., Gottlieb, S., Grant, Z.J., Shadid, J.N.: Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order. J. Sci. Comput. 73, 667–690 (2017)MathSciNetCrossRef
8.
go back to reference Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)MathSciNetCrossRef Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)MathSciNetCrossRef
9.
go back to reference Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong-stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRef Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong-stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRef
10.
go back to reference Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control. A Lyapunov-Based Approach, Princeton University Press, Princeton, NJ (2008)CrossRef Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control. A Lyapunov-Based Approach, Princeton University Press, Princeton, NJ (2008)CrossRef
11.
go back to reference Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)CrossRef Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)CrossRef
12.
go back to reference Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory. I. Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005) Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory. I. Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005)
13.
14.
go back to reference Kato, T.: Perturbation Theory For Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition Kato, T.: Perturbation Theory For Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition
15.
go back to reference Kohaupt, L.: Differential calculus for some \(p\)-norms of the fundamental matrix with applications. J. Comput. Appl. Math. 135, 1–21 (2001)MathSciNetCrossRef Kohaupt, L.: Differential calculus for some \(p\)-norms of the fundamental matrix with applications. J. Comput. Appl. Math. 135, 1–21 (2001)MathSciNetCrossRef
16.
go back to reference Kreiss, H.-O., Scherer, G.: Method of lines for hyperbolic differential equations. SIAM J. Numer. Anal. 29, 640–646 (1992)MathSciNetCrossRef Kreiss, H.-O., Scherer, G.: Method of lines for hyperbolic differential equations. SIAM J. Numer. Anal. 29, 640–646 (1992)MathSciNetCrossRef
17.
go back to reference Levy, D., Tadmor, E.: From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40, 40–73 (1998)MathSciNetCrossRef Levy, D., Tadmor, E.: From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40, 40–73 (1998)MathSciNetCrossRef
18.
go back to reference Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37, 1625–1654 (2016)MathSciNetCrossRef Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37, 1625–1654 (2016)MathSciNetCrossRef
19.
go back to reference Mehl, C., Mehrmann, V., Wojtylak, M.: Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J. Matrix Anal. Appl. 39, 1489–1519 (2018)MathSciNetCrossRef Mehl, C., Mehrmann, V., Wojtylak, M.: Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J. Matrix Anal. Appl. 39, 1489–1519 (2018)MathSciNetCrossRef
20.
go back to reference Mehl, C., Mehrmann, V., Wojtylak, M.: Distance problems for dissipative hamiltonian systems and related matrix polynomials. Linear Algebra Appl. 623, 335–366 (2021)MathSciNetCrossRef Mehl, C., Mehrmann, V., Wojtylak, M.: Distance problems for dissipative hamiltonian systems and related matrix polynomials. Linear Algebra Appl. 623, 335–366 (2021)MathSciNetCrossRef
21.
go back to reference Ranocha, H.: On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators. IMA J. Numer. Anal. 41, 654–682 (2021)MathSciNetCrossRef Ranocha, H.: On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators. IMA J. Numer. Anal. 41, 654–682 (2021)MathSciNetCrossRef
22.
go back to reference Ranocha, H., Ketcheson, D.I.: Energy stability of explicit Runge-Kutta methods for nonautonomous or nonlinear problems. SIAM J. Numer. Anal. 58, 3382–3405 (2020)MathSciNetCrossRef Ranocha, H., Ketcheson, D.I.: Energy stability of explicit Runge-Kutta methods for nonautonomous or nonlinear problems. SIAM J. Numer. Anal. 58, 3382–3405 (2020)MathSciNetCrossRef
23.
24.
go back to reference Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRef Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRef
26.
go back to reference Sun, Z., Shu, C.-W.: Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations. Ann. Math. Sci. Appl. 2, 255–284 (2017)MathSciNetCrossRef Sun, Z., Shu, C.-W.: Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations. Ann. Math. Sci. Appl. 2, 255–284 (2017)MathSciNetCrossRef
27.
go back to reference Sun, Z., Shu, C.-W.: Strong stability of explicit Runge-Kutta time discretizations. SIAM J. Numer. Anal. 57, 1158–1182 (2019)MathSciNetCrossRef Sun, Z., Shu, C.-W.: Strong stability of explicit Runge-Kutta time discretizations. SIAM J. Numer. Anal. 57, 1158–1182 (2019)MathSciNetCrossRef
28.
go back to reference Sun, Z., Wei, Y., Wu, K.: On energy laws and stability of Runge-Kutta methods for linear seminegative problems. SIAM J. Numer. Anal. 60, 2448–2481 (2022)MathSciNetCrossRef Sun, Z., Wei, Y., Wu, K.: On energy laws and stability of Runge-Kutta methods for linear seminegative problems. SIAM J. Numer. Anal. 60, 2448–2481 (2022)MathSciNetCrossRef
29.
go back to reference Tadmor, E.: From semidiscrete to fully discrete: Stability of Runge–Kutta schemes by the energy method. II. In: Estep, D., Tavener, S. (eds.) Collected Lectures on the Preservation of Stability under Discretization. Proceedings of Applied Mathematics, vol. 109, pp. 25–49. SIAM, Philadelphia (2002) Tadmor, E.: From semidiscrete to fully discrete: Stability of Runge–Kutta schemes by the energy method. II. In: Estep, D., Tavener, S. (eds.) Collected Lectures on the Preservation of Stability under Discretization. Proceedings of Applied Mathematics, vol. 109, pp. 25–49. SIAM, Philadelphia (2002)
Metadata
Title
Necessary and Sufficient Conditions for Strong Stability of Explicit Runge–Kutta Methods
Authors
Franz Achleitner
Anton Arnold
Ansgar Jüngel
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_1

Premium Partner