Skip to main content
Top

2020 | OriginalPaper | Chapter

11. Negative Thermal Expansion

Author : Prof. Dr. Teik-Cheng Lim

Published in: Mechanics of Metamaterials with Negative Parameters

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews the various 2D NTE systems, including those constructed from bimaterial strips, laminates (of various stiffness disparity), trusses (of triangular cells, Y-shaped elements, and Hoberman circle), meshes, rigid unit modes, and ring-rod assemblies (both 2D and 3D). Finally, a few examples of 3D NTE structures are briefly mentioned.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ai L, Gao XL (2018) Three-dimensional metamaterials with a negative Poisson’s ratio and a non-positive coefficient of thermal expansion. Int J Mech Sci 135:101–113 Ai L, Gao XL (2018) Three-dimensional metamaterials with a negative Poisson’s ratio and a non-positive coefficient of thermal expansion. Int J Mech Sci 135:101–113
go back to reference Attfield MP, Sleight AW (1998) Exceptional negative thermal expansion in AlPO4–17. Chem Mater 10(7):2013–2019 Attfield MP, Sleight AW (1998) Exceptional negative thermal expansion in AlPO4–17. Chem Mater 10(7):2013–2019
go back to reference Auray M, Quarton M, Leblanc M (1995) Zirconium tungstate. Acta Crystallographica C 51(11):2210–2213 Auray M, Quarton M, Leblanc M (1995) Zirconium tungstate. Acta Crystallographica C 51(11):2210–2213
go back to reference Cabras L, Brun M, Misseroni D (2019) Micro-structured medium with large isotropic negative thermal expansion. Proc Roy Soc A 475(2232):20190468 Cabras L, Brun M, Misseroni D (2019) Micro-structured medium with large isotropic negative thermal expansion. Proc Roy Soc A 475(2232):20190468
go back to reference Chu CN, Saka N, Suh NP (1987) Negative thermal expansion ceramics: a review. Mater Sci Eng 95:303–308 Chu CN, Saka N, Suh NP (1987) Negative thermal expansion ceramics: a review. Mater Sci Eng 95:303–308
go back to reference Dove MT, Welche PRL, Heine V (1998) Negative thermal expansion in beta-quartz. Phys Chem Miner 26(1):63–77 Dove MT, Welche PRL, Heine V (1998) Negative thermal expansion in beta-quartz. Phys Chem Miner 26(1):63–77
go back to reference Evans JSO, Hanson JC, Sleight AW (1998) Room-temperature superstructure of ZrV2O7. Acta Crystallographica B 54(6):705–713 Evans JSO, Hanson JC, Sleight AW (1998) Room-temperature superstructure of ZrV2O7. Acta Crystallographica B 54(6):705–713
go back to reference Evans JSO, Jorgensen JD, Short S, David WIF, Ibberson RM, Sleight AW (1999) Thermal expansion in the orthorhombic γ phase of ZrW2O8. Phy Rev B 60(21):14643–14648 Evans JSO, Jorgensen JD, Short S, David WIF, Ibberson RM, Sleight AW (1999) Thermal expansion in the orthorhombic γ phase of ZrW2O8. Phy Rev B 60(21):14643–14648
go back to reference Fisher DJ (2018) Negative thermal expansion materials. Materials Research Forum LLC, Millersville Fisher DJ (2018) Negative thermal expansion materials. Materials Research Forum LLC, Millersville
go back to reference Gere JM (2001) Mechanics of materials, 5th edn. Nelson Thones Ltd, Cheltenham Gere JM (2001) Mechanics of materials, 5th edn. Nelson Thones Ltd, Cheltenham
go back to reference Graham J, Wadsley AD, Weymouth JH, Williams LS (1959) A new ternary oxide, ZrW2O8. J Am Ceram Soc 42(11):570–570 Graham J, Wadsley AD, Weymouth JH, Williams LS (1959) A new ternary oxide, ZrW2O8. J Am Ceram Soc 42(11):570–570
go back to reference Grima JN, Farrugia PS, Gatt R, Zammit V (2007) A system with adjustable positive or negative thermal expansion. Proc Roy Soc A 463(2082):1585–1596 Grima JN, Farrugia PS, Gatt R, Zammit V (2007) A system with adjustable positive or negative thermal expansion. Proc Roy Soc A 463(2082):1585–1596
go back to reference Grima JN, Oliveri L, Ellul B, Gatt R, Attard D, Cicala G, Recca G (2010) Adjustable and negative thermal expansion from multilayered systems. Phys Status Solidi RRL 4(5–6):133–135 Grima JN, Oliveri L, Ellul B, Gatt R, Attard D, Cicala G, Recca G (2010) Adjustable and negative thermal expansion from multilayered systems. Phys Status Solidi RRL 4(5–6):133–135
go back to reference Grima JN, Bajada M, Attard D, Dudek KK, Gatt R (2015) Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach. Proc Roy Soc A 471(2179):20150188 Grima JN, Bajada M, Attard D, Dudek KK, Gatt R (2015) Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach. Proc Roy Soc A 471(2179):20150188
go back to reference Ha CS, Hestekin E, Li J, Plesha ME, Lakes RS (2015) Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys Status Solidi B 252(7):1431–1434 Ha CS, Hestekin E, Li J, Plesha ME, Lakes RS (2015) Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys Status Solidi B 252(7):1431–1434
go back to reference Ha CS, Plesha ME, Lakes RS (2017) Simulations of thermoelastic triangular cell lattices with bonded joints by finite element analysis. Extreme Mech Lett 12:101–107 Ha CS, Plesha ME, Lakes RS (2017) Simulations of thermoelastic triangular cell lattices with bonded joints by finite element analysis. Extreme Mech Lett 12:101–107
go back to reference Hummel FA (1948) Thermal expansion properties of natural Lithia minerals. Foote Prints 20:3–11 Hummel FA (1948) Thermal expansion properties of natural Lithia minerals. Foote Prints 20:3–11
go back to reference Hummel FA (1951) Thermal expansion properties of some synthetic lithia minerals. J Am Ceram Soc 34:235–239 Hummel FA (1951) Thermal expansion properties of some synthetic lithia minerals. J Am Ceram Soc 34:235–239
go back to reference Khosrovani K, Sleight AW, Vogt T (1997) Structure of ZrV2O7 from −263 to 470 °C. J Solid State Chem 132(2):355–360 Khosrovani K, Sleight AW, Vogt T (1997) Structure of ZrV2O7 from −263 to 470 °C. J Solid State Chem 132(2):355–360
go back to reference Korthuis V, Khosrovani N, Sleight AW, Roberts N, Dupree R, Warren WW (1995) Negative thermal expansion and phase transitions in the ZrV2 − xPxO7 series. Chem Mater 7(2):412–417 Korthuis V, Khosrovani N, Sleight AW, Roberts N, Dupree R, Warren WW (1995) Negative thermal expansion and phase transitions in the ZrV2 − xPxO7 series. Chem Mater 7(2):412–417
go back to reference Lakes R (1996) Cellular solid structures with unbounded thermal expansion. J Mater Sci Lett 15(6):475–477 Lakes R (1996) Cellular solid structures with unbounded thermal expansion. J Mater Sci Lett 15(6):475–477
go back to reference Lakes R (2007) Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl Phys Lett 90(22):221905 Lakes R (2007) Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl Phys Lett 90(22):221905
go back to reference Li Y, Chen Y, Li T, Cao S, Wang L (2018) Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Compos Struct 189:586–597 Li Y, Chen Y, Li T, Cao S, Wang L (2018) Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Compos Struct 189:586–597
go back to reference Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11(1):212–216 Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11(1):212–216
go back to reference Lim TC (2005) Anisotropic and negative thermal expansion behavior in a cellular microstructure. J Mater Sci 40(12):3275–3277 Lim TC (2005) Anisotropic and negative thermal expansion behavior in a cellular microstructure. J Mater Sci 40(12):3275–3277
go back to reference Lim TC (2010) Preliminary assessment of a multifunctional potential energy function. Mol Phys 108(12):1589–1597 Lim TC (2010) Preliminary assessment of a multifunctional potential energy function. Mol Phys 108(12):1589–1597
go back to reference Lim TC (2011) Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates. Phys Status Solidi B 248(1):140–147 Lim TC (2011) Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates. Phys Status Solidi B 248(1):140–147
go back to reference Lim TC (2012) Negative thermal expansion structures constructed from positive thermal expansion trusses. J Mater Sci 47(1):368–373 Lim TC (2012) Negative thermal expansion structures constructed from positive thermal expansion trusses. J Mater Sci 47(1):368–373
go back to reference Lim TC (2013) Negative thermal expansion in transversely isotropic space frame trusses. Phys Status Solidi B 250(10):2062–2069 Lim TC (2013) Negative thermal expansion in transversely isotropic space frame trusses. Phys Status Solidi B 250(10):2062–2069
go back to reference Lim TC (2017) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254(12):1600775 Lim TC (2017) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254(12):1600775
go back to reference Lim TC (2019a) A 2D auxetikos system based on interconnected shurikens. SN Appl Sci 1(11):1383 Lim TC (2019a) A 2D auxetikos system based on interconnected shurikens. SN Appl Sci 1(11):1383
go back to reference Lim TC (2019b) 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating biomaterials. Mater Res Express 6(11):115804 Lim TC (2019b) 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating biomaterials. Mater Res Express 6(11):115804
go back to reference Lim TC (2019c) A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos Struct 226:111256 Lim TC (2019c) A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos Struct 226:111256
go back to reference Lim TC (2019d) Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv Compos Hybrid Mater 2(4):657–669 Lim TC (2019d) Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv Compos Hybrid Mater 2(4):657–669
go back to reference Lim TC (2019e) A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Compos Struct 220:185–193 Lim TC (2019e) A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Compos Struct 220:185–193
go back to reference Lim TC (2019f) Composite microstructures with Poisson’s ratio sign switching upon stress reversal. Compos Struct 209:34–44 Lim TC (2019f) Composite microstructures with Poisson’s ratio sign switching upon stress reversal. Compos Struct 209:34–44
go back to reference Lim TC (2019g) Metamaterials with Poisson’s ratio sign toggling by means of microstructural duality. SN Appl Sci 1(2):176 Lim TC (2019g) Metamaterials with Poisson’s ratio sign toggling by means of microstructural duality. SN Appl Sci 1(2):176
go back to reference Lim TC (2020a) Metacomposite with auxetic and in situ sign reversible thermal expansivity upon temperature fluctuation. Compos Commun 19:30–36 Lim TC (2020a) Metacomposite with auxetic and in situ sign reversible thermal expansivity upon temperature fluctuation. Compos Commun 19:30–36
go back to reference Lim TC (2020b) Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Appl Sci 2(5):918 Lim TC (2020b) Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Appl Sci 2(5):918
go back to reference Lim TC (2020c) Metacomposite structure with sign-changing coefficients of hygrothermal expansions inspired by Islamic motif. Compos Struct 251:112660 Lim TC (2020c) Metacomposite structure with sign-changing coefficients of hygrothermal expansions inspired by Islamic motif. Compos Struct 251:112660
go back to reference Lind C (2012) Two decades of negative thermal expansion research: Where do we stand? Materials 5(6):1125–1154 Lind C (2012) Two decades of negative thermal expansion research: Where do we stand? Materials 5(6):1125–1154
go back to reference Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Negative thermal expansion from 0.3 to 1050 Kelvins in ZrW2O8. Science 272(5258):90–92 Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Negative thermal expansion from 0.3 to 1050 Kelvins in ZrW2O8. Science 272(5258):90–92
go back to reference Nye JF (1957) Physical properties of crystals. Clarendon Press, Oxford, UK Nye JF (1957) Physical properties of crystals. Clarendon Press, Oxford, UK
go back to reference Raminhos JS, Borges JP, Velhinho A (2019) Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Mater Struct 28(4):045010 Raminhos JS, Borges JP, Velhinho A (2019) Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Mater Struct 28(4):045010
go back to reference Rees DWA (1990) The mechanics of solids and structures. McGraw-Hill, Maidenhead Rees DWA (1990) The mechanics of solids and structures. McGraw-Hill, Maidenhead
go back to reference Scheel K (1907a) Versuche über die Ausdehnung fester Körper, insbesondere von Quarz in Richtung der Hauptachse, Platin, Palladium und Quarzglas bei der Temperatur der flüssigen Luft. Verh Dtsch Phys Ges 9:3–23 Scheel K (1907a) Versuche über die Ausdehnung fester Körper, insbesondere von Quarz in Richtung der Hauptachse, Platin, Palladium und Quarzglas bei der Temperatur der flüssigen Luft. Verh Dtsch Phys Ges 9:3–23
go back to reference Scheel K (1907b) Über die ausdehnung des quarzglases. Verh Dtsch Phys Ges 9:719–721 Scheel K (1907b) Über die ausdehnung des quarzglases. Verh Dtsch Phys Ges 9:719–721
go back to reference Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2(3):380–404 Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2(3):380–404
go back to reference Sleight AW (1995) Thermal contraction. Endeavour 19(2):64–68 Sleight AW (1995) Thermal contraction. Endeavour 19(2):64–68
go back to reference Sleight AW (1998a) Compounds that contract on heating. Inorg Chem 37(12):2854–2860 Sleight AW (1998a) Compounds that contract on heating. Inorg Chem 37(12):2854–2860
go back to reference Sleight (1998b) Isotropic negative thermal expansion. Ann Rev Mater Sci 28:29–43 Sleight (1998b) Isotropic negative thermal expansion. Ann Rev Mater Sci 28:29–43
go back to reference Takenaka K (2018) Progress of research in negative thermal expansion materials: paradigm shift in the control of thermal expansion. Front Chem 6:267 Takenaka K (2018) Progress of research in negative thermal expansion materials: paradigm shift in the control of thermal expansion. Front Chem 6:267
go back to reference Tao JZ, Sleight AW (2003) The role of rigid unit modes in negative thermal expansion. J Solid State Chem 173(2):442–448 Tao JZ, Sleight AW (2003) The role of rigid unit modes in negative thermal expansion. J Solid State Chem 173(2):442–448
go back to reference Timoshenko SP (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11(3):233–235 Timoshenko SP (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11(3):233–235
go back to reference Withers RL, Evans JSO, Hanson JC, Sleight AW (1998) An in-situ temperature dependent electron and X-ray diffraction study of the structural phase transitions in ZrV2O7. J Solid State Chem 137(1):161–167 Withers RL, Evans JSO, Hanson JC, Sleight AW (1998) An in-situ temperature dependent electron and X-ray diffraction study of the structural phase transitions in ZrV2O7. J Solid State Chem 137(1):161–167
go back to reference Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA, Engberg D (1999) Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: a neutron powder diffraction study. Chem Mater 11(9):2508–2514 Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA, Engberg D (1999) Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: a neutron powder diffraction study. Chem Mater 11(9):2508–2514
go back to reference Wu L, Li B, Zhou J (2016) Isotropic negative thermal expansion metamaterials. ACS Appl Mater Interfaces 8(27):17721–17727 Wu L, Li B, Zhou J (2016) Isotropic negative thermal expansion metamaterials. ACS Appl Mater Interfaces 8(27):17721–17727
go back to reference Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6:34924 Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6:34924
Metadata
Title
Negative Thermal Expansion
Author
Prof. Dr. Teik-Cheng Lim
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6446-8_11

Premium Partners