Skip to main content
Top
Published in: Rare Metals 10/2021

21-05-2021 | Original Article

Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure

Authors: Xiao-Rong Zhou, Ze-Xin Feng, Pei-Xin Qin, Han Yan, Xiao-Ning Wang, Pan Nie, Hao-Jiang Wu, Xin Zhang, Hong-Yu Chen, Zi-Ang Meng, Zeng-Wei Zhu, Zhi-Qi Liu

Published in: Rare Metals | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The emerging Ni-based superconducting oxide thin films are rather intriguing to the entire condensed matter physics. Here, we report some brief experimental results on transport measurements for a 14-nm-thick superconducting Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure with an onset transition temperature of ~ 9.5 K. Photoluminescence measurements reveal that there is negligible oxygen vacancy creation in the SrTiO3 substrate during thin-film deposition and post chemical reduction for the Nd0.8Sr0.2NiO2/SrTiO3 heterostructure. It was found that the critical current density of the Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure is relatively small, ~ 4 × 103 A·cm−2. Although the surface steps of SrTiO3 substrates lead to an anisotropy for in-plane resistivity, the superconducting transition temperatures are almost the same. The out-of-plane magnetotransport measurements yield an upper critical field of ~ 11.4 T and an estimated in-plane Ginzburg–Landau coherence length of ~ 5.4 nm. High-field magnetotransport measurements up to 50 T reveal anisotropic critical fields at 1.8 K for three different measurement geometries and a complicated Hall effect. An electric field applied via the SrTiO3 substrate slightly varies the superconducting transition temperature. These experimental results could be useful for this rapidly developing field.

摘要

新兴镍基超导氧化物薄膜在整个凝聚态物理领域引起了很大关注。在此论文中, 我们通过电输运测量研究了一个 14 nm 厚的超导 Nd0.8Sr0.2NiO2/SrTiO3 异质结样品。这个样品的起始超导转变温度约为 9.5 K。光致荧光谱测量发现: 此异质结中 SrTiO3基片内部的氧空位含量极少。这说明纳米薄膜的沉积及后续化学氢化过程并没有在 SrTiO3 单晶基片中引入显著的氧空位。我们还发现这种超导异质结的临界电流密度相对很低, 约为 4 × 103 A·cm−2。虽然 SrTiO3 单晶基片的表面台阶诱发了面内电阻率的各向异性, 但超导转变温度却几乎不受影响。在薄膜表面的垂直方向施加磁场的电输运测量揭示出此超导样品的上临界场约为11.4 T, 对应面内Ginzburg-Landau相干长度约为 5.4 nm。高达 50 T 的强磁场电输运测量研究发现: 1.8 K 下, 完全破坏超导态使得样品达到正常态电阻率的临界磁场具有各向异性。

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Li D, Lee K, Wang BY, Osada M, Crossley S, Lee HR, Cui Y, Hikita Y, Hwang HY. Superconductivity in an infinite-layer nickelate. Nature. 2019;572(7771):624.CrossRef Li D, Lee K, Wang BY, Osada M, Crossley S, Lee HR, Cui Y, Hikita Y, Hwang HY. Superconductivity in an infinite-layer nickelate. Nature. 2019;572(7771):624.CrossRef
[2]
go back to reference Hayward MA, Rosseinsky MJ. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 2013;5(6):839.CrossRef Hayward MA, Rosseinsky MJ. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 2013;5(6):839.CrossRef
[3]
go back to reference Zhang FC, Rice TM. Effective Hamiltonian for the superconducting Cu oxides. Phys Rev B. 1988;37(1):3759.CrossRef Zhang FC, Rice TM. Effective Hamiltonian for the superconducting Cu oxides. Phys Rev B. 1988;37(1):3759.CrossRef
[4]
go back to reference Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K, Arita R. Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2. Phys Rev B. 2019;100(20):205138.CrossRef Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K, Arita R. Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2. Phys Rev B. 2019;100(20):205138.CrossRef
[5]
go back to reference Jiang P, Si L, Liao Z, Zhong Z. Electronic structure of rare-earth infinite-layer RNiO2 (R = La, Nd). Phys Rev B. 2019;100(20):201106(R).CrossRef Jiang P, Si L, Liao Z, Zhong Z. Electronic structure of rare-earth infinite-layer RNiO2 (R = La, Nd). Phys Rev B. 2019;100(20):201106(R).CrossRef
[6]
go back to reference Botana AS, Norman MR. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys Rev X. 2020;10(1):011024. Botana AS, Norman MR. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys Rev X. 2020;10(1):011024.
[7]
go back to reference Zhang GM, Yang YF, Zhang FC. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys Rev B. 2020;101(2):020501(R).CrossRef Zhang GM, Yang YF, Zhang FC. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys Rev B. 2020;101(2):020501(R).CrossRef
[8]
go back to reference Adhikary P, Bandyopadhyay S, Das T, Dasgupta I, Saha-Dasgupta T. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys Rev B. 2020;102(10):100501(R).CrossRef Adhikary P, Bandyopadhyay S, Das T, Dasgupta I, Saha-Dasgupta T. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys Rev B. 2020;102(10):100501(R).CrossRef
[9]
go back to reference Gu Y, Zhu S, Wang X, Hu J, Chen H. A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates. Commun Phys. 2020;3:84.CrossRef Gu Y, Zhu S, Wang X, Hu J, Chen H. A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates. Commun Phys. 2020;3:84.CrossRef
[10]
go back to reference Geisler B, Pentcheva R. Fundamental difference in the electronic reconstruction of infinite-layer versus perovskite neodymium nickelate films on SrTiO3(001). Phys Rev B. 2020;102(2):020502(R).CrossRef Geisler B, Pentcheva R. Fundamental difference in the electronic reconstruction of infinite-layer versus perovskite neodymium nickelate films on SrTiO3(001). Phys Rev B. 2020;102(2):020502(R).CrossRef
[11]
go back to reference Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, Saha-Dasgupta T. Superconductivity in infinite-layer nickelates: role of f orbitals. Phys Rev B. 2020;102(22):220502(R).CrossRef Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, Saha-Dasgupta T. Superconductivity in infinite-layer nickelates: role of f orbitals. Phys Rev B. 2020;102(22):220502(R).CrossRef
[12]
go back to reference He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L, Zhong Z. Polarity-induced electronic and atomic reconstruction at NdNiO2/SrTiO3 interfaces. Phys Rev B. 2020;102(3):035118.CrossRef He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L, Zhong Z. Polarity-induced electronic and atomic reconstruction at NdNiO2/SrTiO3 interfaces. Phys Rev B. 2020;102(3):035118.CrossRef
[13]
go back to reference Petocchi F, Christiansson V, Nilsson F, Aryasetiawan F, Werner P. Normal State of Nd1−xSrxNiO2 from self-consistent GW + EDMFT. Phys Rev X. 2020;10(4):041047. Petocchi F, Christiansson V, Nilsson F, Aryasetiawan F, Werner P. Normal State of Nd1xSrxNiO2 from self-consistent GW + EDMFT. Phys Rev X. 2020;10(4):041047.
[14]
go back to reference Nica EM, Krishna J, Yu R, Si Q, Botana AS, Erten O. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys Rev B. 2020;102(2):020504(R).CrossRef Nica EM, Krishna J, Yu R, Si Q, Botana AS, Erten O. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys Rev B. 2020;102(2):020504(R).CrossRef
[15]
go back to reference Leonov I, Skornyakov SL, Savrasov SY. Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping. Phys Rev B. 2020;101(24):241108(R).CrossRef Leonov I, Skornyakov SL, Savrasov SY. Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping. Phys Rev B. 2020;101(24):241108(R).CrossRef
[16]
go back to reference Lechermann F. Late transition metal oxides with infinite-layer structure: nickelates versus cuprates. Phys Rev B. 2020;101(8):081110(R).CrossRef Lechermann F. Late transition metal oxides with infinite-layer structure: nickelates versus cuprates. Phys Rev B. 2020;101(8):081110(R).CrossRef
[17]
go back to reference Lechermann F. Multiorbital processes rule the Nd1−xSrxNiO2 normal state. Phys Rev X. 2020;10(4):041002. Lechermann F. Multiorbital processes rule the Nd1xSrxNiO2 normal state. Phys Rev X. 2020;10(4):041002.
[18]
go back to reference Krishna J, LaBollita H, Fumega AO, Pardo V, Botana AS. Effects of Sr doping on the electronic and spin-state properties of infinite-layer nickelates: nature of holes. Phys Rev B. 2020;102(22):224506.CrossRef Krishna J, LaBollita H, Fumega AO, Pardo V, Botana AS. Effects of Sr doping on the electronic and spin-state properties of infinite-layer nickelates: nature of holes. Phys Rev B. 2020;102(22):224506.CrossRef
[19]
go back to reference Katukuri VM, Bogdanov NA, Weser O, Brink J, Alavi A. Electronic correlations and magnetic interactions in infinite-layer NdNiO2. Phys Rev B. 2020;102(24):241112(R).CrossRef Katukuri VM, Bogdanov NA, Weser O, Brink J, Alavi A. Electronic correlations and magnetic interactions in infinite-layer NdNiO2. Phys Rev B. 2020;102(24):241112(R).CrossRef
[20]
go back to reference Jiang M, Berciu M, Sawatzky GA. Critical nature of the Ni spin state in doped NdNiO2. Phys Rev Lett. 2020;124(20):207004.CrossRef Jiang M, Berciu M, Sawatzky GA. Critical nature of the Ni spin state in doped NdNiO2. Phys Rev Lett. 2020;124(20):207004.CrossRef
[21]
go back to reference Zhang Y, Lin LF, Hu W, Moreo A, Dong S, Dagotto E. Similarities and differences between nickelate and cuprate films grown on a SrTiO3 substrate. Phys Rev B. 2020;102(19):195117.CrossRef Zhang Y, Lin LF, Hu W, Moreo A, Dong S, Dagotto E. Similarities and differences between nickelate and cuprate films grown on a SrTiO3 substrate. Phys Rev B. 2020;102(19):195117.CrossRef
[22]
go back to reference Werner P, Hoshino S. Nickelate superconductors: multiorbital nature and spin freezing. Phys Rev B. 2020;101(4):041104(R).CrossRef Werner P, Hoshino S. Nickelate superconductors: multiorbital nature and spin freezing. Phys Rev B. 2020;101(4):041104(R).CrossRef
[23]
go back to reference Wang Z, Zhang GM, Yang YF, Zhang FC. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys Rev B. 2020;102(22):220501(R).CrossRef Wang Z, Zhang GM, Yang YF, Zhang FC. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys Rev B. 2020;102(22):220501(R).CrossRef
[24]
go back to reference Wang Y, Kang CJ, Miao H, Kotliar G. Hund’s metal physics: from SrNiO2 to LaNiO2. Phys Rev B. 2020;102(16):161118(R).CrossRef Wang Y, Kang CJ, Miao H, Kotliar G. Hund’s metal physics: from SrNiO2 to LaNiO2. Phys Rev B. 2020;102(16):161118(R).CrossRef
[25]
go back to reference Si L, Xiao W, Kaufmann J, Tomczak JM, Lu Y, Zhong Z, Held K. Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO2. Phys Rev Lett. 2020;124(16):166402.CrossRef Si L, Xiao W, Kaufmann J, Tomczak JM, Lu Y, Zhong Z, Held K. Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO2. Phys Rev Lett. 2020;124(16):166402.CrossRef
[26]
go back to reference Ryee S, Yoon H, Kim TJ, Jeong MY, Han MJ. Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd1−xSrxNiO2. Phys Rev B. 2020;101(6):064513.CrossRef Ryee S, Yoon H, Kim TJ, Jeong MY, Han MJ. Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd1xSrxNiO2. Phys Rev B. 2020;101(6):064513.CrossRef
[27]
go back to reference Liu Z, Xu C, Cao C, Zhu W, Wang ZF, Yang J. Doping dependence of electronic structure of infinite-layer NdNiO2. Phys Rev B. 2020;103(4):045103.CrossRef Liu Z, Xu C, Cao C, Zhu W, Wang ZF, Yang J. Doping dependence of electronic structure of infinite-layer NdNiO2. Phys Rev B. 2020;103(4):045103.CrossRef
[28]
go back to reference Wan X, Ivanov V, Resta G, Leonov I, Savrasov SY. Exchange interactions and sensitivity of the Ni two-hole spin state to Hund’s coupling in doped NdNiO2. Phys Rev B. 2020;103(7):075123.CrossRef Wan X, Ivanov V, Resta G, Leonov I, Savrasov SY. Exchange interactions and sensitivity of the Ni two-hole spin state to Hund’s coupling in doped NdNiO2. Phys Rev B. 2020;103(7):075123.CrossRef
[29]
go back to reference Wu X, Sante DD, Schwemmer T, Hanke W, Hwang HY, Raghu S, Thomale R. Robust dx2−y2 wave superconductivity of infinite-layer nickelates. Phys Rev B. 2020;101(6):060504(R).CrossRef Wu X, Sante DD, Schwemmer T, Hanke W, Hwang HY, Raghu S, Thomale R. Robust dx2y2 wave superconductivity of infinite-layer nickelates. Phys Rev B. 2020;101(6):060504(R).CrossRef
[31]
go back to reference Osada M, Wang BY, Goodge BH, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis LF, Hwang HY. A superconducting praseodymium nickelate with infinite layer structure. Nano Lett. 2020;20(8):5735.CrossRef Osada M, Wang BY, Goodge BH, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis LF, Hwang HY. A superconducting praseodymium nickelate with infinite layer structure. Nano Lett. 2020;20(8):5735.CrossRef
[32]
go back to reference Li D, Wang BY, Lee K, Harvey SP, Osada M, Goodge BH, Kourkoutis LF, Hwang HY. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys Rev Lett. 2020;125(2):027001.CrossRef Li D, Wang BY, Lee K, Harvey SP, Osada M, Goodge BH, Kourkoutis LF, Hwang HY. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys Rev Lett. 2020;125(2):027001.CrossRef
[33]
go back to reference Lee K, Goodge BH, Li D, Osada M, Wang BY, Cui Y, Kourkoutis LF, Hwang HY. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 2020;8(4):041107.CrossRef Lee K, Goodge BH, Li D, Osada M, Wang BY, Cui Y, Kourkoutis LF, Hwang HY. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 2020;8(4):041107.CrossRef
[34]
go back to reference Wang BY, Li D, Goodge BH, Lee K, Osada M, Harvey SP, Kourkoutis LF, Beasley MR, Hwang HY. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat Phys. 2021;17(4):473.CrossRef Wang BY, Li D, Goodge BH, Lee K, Osada M, Harvey SP, Kourkoutis LF, Beasley MR, Hwang HY. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat Phys. 2021;17(4):473.CrossRef
[35]
go back to reference Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, Li Q, Zhu X, Pan X, Nie Y, Wen HH. Single particle tunneling spectrum of superconducting Nd1−xSrxNiO2 thin films. Nat Commun. 2020;11:6027.CrossRef Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, Li Q, Zhu X, Pan X, Nie Y, Wen HH. Single particle tunneling spectrum of superconducting Nd1xSrxNiO2 thin films. Nat Commun. 2020;11:6027.CrossRef
[36]
go back to reference Xiang Y, Li Q, Li Y, Yang H, Nie Y, Wen HH. Physical properties revealed by transport measurements for superconducting Nd0.8Sr0.2NiO2 thin films. Chin Phys Lett. 2021;38(4):047401. Xiang Y, Li Q, Li Y, Yang H, Nie Y, Wen HH. Physical properties revealed by transport measurements for superconducting Nd0.8Sr0.2NiO2 thin films. Chin Phys Lett. 2021;38(4):047401.
[38]
go back to reference Zeng S, Tang CS, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar GJ, Jani H, Lim ZS, Han K, Wan D, Yang P, Pennycook SJ, Wee ATS, Ariando A. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys Rev Lett. 2020;125(14):147003.CrossRef Zeng S, Tang CS, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar GJ, Jani H, Lim ZS, Han K, Wan D, Yang P, Pennycook SJ, Wee ATS, Ariando A. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys Rev Lett. 2020;125(14):147003.CrossRef
[39]
go back to reference Zhou XR, Feng ZX, Qin PX, Yan H, Hu S, Guo HX, Wang XN, Wu HJ, Zhang X, Chen HY, Qiu XP, Liu ZQ. Absence of superconductivity in Nd0.8Sr0.2NiOx thin films without chemical reduction. Rare Met. 2020;39(4):368.CrossRef Zhou XR, Feng ZX, Qin PX, Yan H, Hu S, Guo HX, Wang XN, Wu HJ, Zhang X, Chen HY, Qiu XP, Liu ZQ. Absence of superconductivity in Nd0.8Sr0.2NiOx thin films without chemical reduction. Rare Met. 2020;39(4):368.CrossRef
[40]
go back to reference Liu ZQ, Leusink DP, Wang X, Lü WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando. Metal-insulator transition in SrTiO3−x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.CrossRef Liu ZQ, Leusink DP, Wang X, Lü WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando. Metal-insulator transition in SrTiO3−x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.CrossRef
[41]
go back to reference Liu ZQ, Li CJ, Lü WM, Huang XH, Huang Z, Zeng SW, Qiu XP, Huang LS, Annadi A, Chen JS, Coey JMD, Venkatesan T, Ariando. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010. Liu ZQ, Li CJ, Lü WM, Huang XH, Huang Z, Zeng SW, Qiu XP, Huang LS, Annadi A, Chen JS, Coey JMD, Venkatesan T, Ariando. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010.
[42]
go back to reference Huebener RP, Kampwirth RT, Martin RL, Barbee T, Zubeek RB. Critical current density in superconducting niobium films. J Low Temp Phys. 1975;19:247.CrossRef Huebener RP, Kampwirth RT, Martin RL, Barbee T, Zubeek RB. Critical current density in superconducting niobium films. J Low Temp Phys. 1975;19:247.CrossRef
[43]
go back to reference Chen Y, Bian W, Huang W, Tang X, Zhao G, Li L, Li N, Huo W, Jia J, You C. High critical current density of YBa2Cu3O7−x superconducting films prepared through a DUV-assisted solution deposition process. Sci Rep. 2016;6:38257.CrossRef Chen Y, Bian W, Huang W, Tang X, Zhao G, Li L, Li N, Huo W, Jia J, You C. High critical current density of YBa2Cu3O7−x superconducting films prepared through a DUV-assisted solution deposition process. Sci Rep. 2016;6:38257.CrossRef
[44]
go back to reference Zhao Y, Feng Y, Cheng CH, Zhou L, Wu Y, Machi T, Fudamoto Y, Koshizuka N, Murakami M. High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure. Appl Phys Lett. 2001;79(8):1154.CrossRef Zhao Y, Feng Y, Cheng CH, Zhou L, Wu Y, Machi T, Fudamoto Y, Koshizuka N, Murakami M. High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure. Appl Phys Lett. 2001;79(8):1154.CrossRef
[45]
go back to reference Pallecchi I, Tropeano M, Lamura G, Pani M, Palombo M, Palenzona A, Putti M. Upper critical fields and critical current densities of Fe-based superconductors as compared to those of other technical superconductors. Physica C. 2012;482:68.CrossRef Pallecchi I, Tropeano M, Lamura G, Pani M, Palombo M, Palenzona A, Putti M. Upper critical fields and critical current densities of Fe-based superconductors as compared to those of other technical superconductors. Physica C. 2012;482:68.CrossRef
[46]
go back to reference Li Q, He C, Si J, Zhu X, Zhang Y, Wen HH. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun Mater. 2020;1:16.CrossRef Li Q, He C, Si J, Zhu X, Zhang Y, Wen HH. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun Mater. 2020;1:16.CrossRef
[47]
go back to reference Wang BX, Zheng H, Krivyakina E, Chmaissem O, Lopes PP, Lynn JW, Gallington LC, Ren Y, Rosenkranz S, Mitchell JF, Phelan D. Synthesis and characterization of bulk Nd1−xSrxNiO2 and Nd1−xSrxNiO3. Phys Rev Mater. 2020;4(8):084409.CrossRef Wang BX, Zheng H, Krivyakina E, Chmaissem O, Lopes PP, Lynn JW, Gallington LC, Ren Y, Rosenkranz S, Mitchell JF, Phelan D. Synthesis and characterization of bulk Nd1−xSrxNiO2 and Nd1−xSrxNiO3. Phys Rev Mater. 2020;4(8):084409.CrossRef
[48]
[49]
go back to reference Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field Hc2. III. Electron spin and spin-orbit effects. Phys Rev. 1966;147(1):295.CrossRef Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field Hc2. III. Electron spin and spin-orbit effects. Phys Rev. 1966;147(1):295.CrossRef
[50]
go back to reference Talantsev EF. In-plane p-wave coherence length in iron-based superconductors. Results Phys. 2020;18:103339.CrossRef Talantsev EF. In-plane p-wave coherence length in iron-based superconductors. Results Phys. 2020;18:103339.CrossRef
[51]
go back to reference Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.CrossRef Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.CrossRef
[52]
go back to reference Müller KA, Burkard H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys Rev B. 1979;19(7):3593.CrossRef Müller KA, Burkard H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys Rev B. 1979;19(7):3593.CrossRef
[53]
go back to reference Liu ZQ, Li L, Gai Z, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.CrossRef Liu ZQ, Li L, Gai Z, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.CrossRef
[54]
go back to reference Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.CrossRef Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.CrossRef
[55]
go back to reference Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.CrossRef Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.CrossRef
[56]
go back to reference Yan H, Feng Z, Qin P, Zhou X, Guo H, Wang X, Chen H, Zhang X, Wu H, Jiang C, Liu Z. Electric-field-controlled antiferromagnetic spintronic devices. Adv Mater. 2020;32(12):1905603.CrossRef Yan H, Feng Z, Qin P, Zhou X, Guo H, Wang X, Chen H, Zhang X, Wu H, Jiang C, Liu Z. Electric-field-controlled antiferromagnetic spintronic devices. Adv Mater. 2020;32(12):1905603.CrossRef
[57]
go back to reference Guo H, Feng Z, Yan H, Liu J, Zhang J, Zhou X, Qin P, Cai J, Zeng Z, Zhang X, Wang X, Chen H, Wu H, Jiang C, Liu Z. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv Mater. 2020;32(26):2002300.CrossRef Guo H, Feng Z, Yan H, Liu J, Zhang J, Zhou X, Qin P, Cai J, Zeng Z, Zhang X, Wang X, Chen H, Wu H, Jiang C, Liu Z. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv Mater. 2020;32(26):2002300.CrossRef
[58]
go back to reference Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z, Liu Z. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano. 2020;14(5):6242.CrossRef Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z, Liu Z. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano. 2020;14(5):6242.CrossRef
[59]
go back to reference Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.CrossRef Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.CrossRef
[60]
go back to reference Feng Z, Qin P, Yang Y, Yan H, Guo H, Wang X, Zhou X, Han Y, Yi J, Qi D, Yu X, Breese MBH, Zhang X, Wu H, Chen H, Xiang H, Jiang C, Liu Z. A two-dimensional electron gas based on a 5s oxide with high room-temperature mobility and strain sensitivity. Acta Mater. 2021;204:116516.CrossRef Feng Z, Qin P, Yang Y, Yan H, Guo H, Wang X, Zhou X, Han Y, Yi J, Qi D, Yu X, Breese MBH, Zhang X, Wu H, Chen H, Xiang H, Jiang C, Liu Z. A two-dimensional electron gas based on a 5s oxide with high room-temperature mobility and strain sensitivity. Acta Mater. 2021;204:116516.CrossRef
[61]
go back to reference Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.CrossRef Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.CrossRef
[62]
go back to reference Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.CrossRef Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.CrossRef
[63]
go back to reference Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.CrossRef Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.CrossRef
[64]
go back to reference Xi XX, Li Q, Doughty C, Kwon C, Bhattacharya S, Findikoglu AT, Venkatesan T. Electric field effect in high Tc superconducting ultrathin YBa2Cu3O7−x films. Appl Phys Lett. 1991;59(26):3470.CrossRef Xi XX, Li Q, Doughty C, Kwon C, Bhattacharya S, Findikoglu AT, Venkatesan T. Electric field effect in high Tc superconducting ultrathin YBa2Cu3O7−x films. Appl Phys Lett. 1991;59(26):3470.CrossRef
[65]
go back to reference Li G, Li H, Liu JS, Chen W. Fabrication and characterization of superconducting RSFQ circuits. Rare Met. 2019;38(10):899.CrossRef Li G, Li H, Liu JS, Chen W. Fabrication and characterization of superconducting RSFQ circuits. Rare Met. 2019;38(10):899.CrossRef
[66]
go back to reference Liu ZQ, Lü WM, Lim SL, Qiu XP, Bao NN, Motapothula M, Yi JB, Yang M, Dhar S, Venkatesan T, Ariando. Reversible room-temperature ferromagnetism in Nb-doped SrTiO3 single crystals. Phys Rev B. 2013;87(22):220405(R).CrossRef Liu ZQ, Lü WM, Lim SL, Qiu XP, Bao NN, Motapothula M, Yi JB, Yang M, Dhar S, Venkatesan T, Ariando. Reversible room-temperature ferromagnetism in Nb-doped SrTiO3 single crystals. Phys Rev B. 2013;87(22):220405(R).CrossRef
Metadata
Title
Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure
Authors
Xiao-Rong Zhou
Ze-Xin Feng
Pei-Xin Qin
Han Yan
Xiao-Ning Wang
Pan Nie
Hao-Jiang Wu
Xin Zhang
Hong-Yu Chen
Zi-Ang Meng
Zeng-Wei Zhu
Zhi-Qi Liu
Publication date
21-05-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 10/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01768-3

Other articles of this Issue 10/2021

Rare Metals 10/2021 Go to the issue

Premium Partners