Skip to main content
Top
Published in:

01-12-2020 | Original Article

Neighborhood and PageRank methods for pairwise link prediction

Authors: Huda Nassar, Austin R. Benson, David F. Gleich

Published in: Social Network Analysis and Mining | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Link prediction is a common problem in network science that cuts across many disciplines. The goal is to forecast the appearance of new links or to find links missing in the network. Typical methods for link prediction use the topology of the network to predict the most likely future or missing connections between a pair of nodes. However, network evolution is often mediated by higher-order structures involving more than pairs of nodes; for example, cliques on three nodes (also called triangles) are key to the structure of social networks, but the standard link prediction framework does not directly predict these structures. To address this gap, in recent work, we propose a new link prediction task called “pairwise link prediction” that directly targets the prediction of new triangles, where one is tasked with finding which nodes are most likely to form a triangle with a given edge. We extend this work in this manuscript, and we evaluate a variety of natural extensions to link prediction methods including neighborhood and PageRank-based methods. A key difference from our previous work is the definition of the neighborhood of an edge, which has a surprisingly large impact on the empirical performance. Our experiments on a variety of networks show that diffusion-based methods are less sensitive to the type of graphs used and more consistent in their results. We also show how our pairwise link prediction framework can be used to get better predictions within the context of standard link prediction evaluation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230CrossRef Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230CrossRef
go back to reference Agrawal M, Zitnik M, Leskovec J (2018) Large-scale analysis of disease pathways in the human interactome. In: Pacific symposium on biocomputing, vol 23, p 111. World Scientific Agrawal M, Zitnik M, Leskovec J (2018) Large-scale analysis of disease pathways in the human interactome. In: Pacific symposium on biocomputing, vol 23, p 111. World Scientific
go back to reference Andersen R, Chung F, Lang K (2006) Local graph partitioning using PageRank vectors. In: 2006 47th annual IEEE symposium on foundations of computer science. IEEE Andersen R, Chung F, Lang K (2006) Local graph partitioning using PageRank vectors. In: 2006 47th annual IEEE symposium on foundations of computer science. IEEE
go back to reference Avin C et al (2015) Core size and densification in preferential attachment networks. In: International colloquium on automata. languages, and programming, ICALP 2015. Springer, Berlin, pp 492–503 Avin C et al (2015) Core size and densification in preferential attachment networks. In: International colloquium on automata. languages, and programming, ICALP 2015. Springer, Berlin, pp 492–503
go back to reference Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. WSDM ’11, pp 635–644. ACM, New York, NY, USA Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. WSDM ’11, pp 635–644. ACM, New York, NY, USA
go back to reference Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg J (2018) Simplicial closure and higher-order link prediction. Proc Natl Acad Sci 115:E11221–E11230CrossRef Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg J (2018) Simplicial closure and higher-order link prediction. Proc Natl Acad Sci 115:E11221–E11230CrossRef
go back to reference Benson AR, Gleich DF, Leskovec J (2016) Higher-order organization of complex networks. Science 353(6295):163–166CrossRef Benson AR, Gleich DF, Leskovec J (2016) Higher-order organization of complex networks. Science 353(6295):163–166CrossRef
go back to reference Benson AR, Gleich DF, Lim LH (2017) The spacey random walk: a stochastic process for higher-order data. SIAM Rev 59(2):321–345MathSciNetCrossRef Benson AR, Gleich DF, Lim LH (2017) The spacey random walk: a stochastic process for higher-order data. SIAM Rev 59(2):321–345MathSciNetCrossRef
go back to reference Dave V, Hasan M (2019) Triangle completion time prediction using time-conserving embedding. ECMLPKDD Dave V, Hasan M (2019) Triangle completion time prediction using time-conserving embedding. ECMLPKDD
go back to reference Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, CambridgeCrossRef Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, CambridgeCrossRef
go back to reference Eikmeier N, Ramani AS, Gleich DF (2018) The hyperkron graph model for higher-order features. In: IEEE international conference on data mining, ICDM 2018, Singapore, 2018 Eikmeier N, Ramani AS, Gleich DF (2018) The hyperkron graph model for higher-order features. In: IEEE international conference on data mining, ICDM 2018, Singapore, 2018
go back to reference Gomez-Uribe CA, Hunt N (2015) The netflix recommender system: algorithms, business value, and innovation. ACM Trans Manag Inf Syst 6(4):13:1–13:19 Gomez-Uribe CA, Hunt N (2015) The netflix recommender system: algorithms, business value, and innovation. ACM Trans Manag Inf Syst 6(4):13:1–13:19
go back to reference Granovetter M.S (1977) The strength of weak ties. In: Social networks, pp 347–367. Elsevier Granovetter M.S (1977) The strength of weak ties. In: Social networks, pp 347–367. Elsevier
go back to reference Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68:065103CrossRef Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68:065103CrossRef
go back to reference Holland P.W, Leinhardt S (1977) A method for detecting structure in sociometric data. In: Social networks, pp 411–432. Elsevier Holland P.W, Leinhardt S (1977) A method for detecting structure in sociometric data. In: Social networks, pp 411–432. Elsevier
go back to reference Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRef Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRef
go back to reference Lambiotte R, Rosvall M, Scholtes I (2019) From networks to optimal higher-order models of complex systems. Nat Phys 15(4):313–320CrossRef Lambiotte R, Rosvall M, Scholtes I (2019) From networks to optimal higher-order models of complex systems. Nat Phys 15(4):313–320CrossRef
go back to reference Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol 58(7):1019–1031CrossRef Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol 58(7):1019–1031CrossRef
go back to reference Lin C.H, Konecki D.M, Liu M, Wilson S.J, Nassar H, Wilkins A.D, Gleich D.F, Lichtarge O (2018) Multimodal network diffusion predicts future disease-gene-chemical associations Lin C.H, Konecki D.M, Liu M, Wilson S.J, Nassar H, Wilkins A.D, Gleich D.F, Lichtarge O (2018) Multimodal network diffusion predicts future disease-gene-chemical associations
go back to reference Lofgren P, Banerjee S, Goel A (2016) Personalized pagerank estimation and search: A bidirectional approach. In: Proceedings of the ninth ACM international conference on web search and data mining, WSDM ’16, pp 163–172. ACM, New York Lofgren P, Banerjee S, Goel A (2016) Personalized pagerank estimation and search: A bidirectional approach. In: Proceedings of the ninth ACM international conference on web search and data mining, WSDM ’16, pp 163–172. ACM, New York
go back to reference Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A Stat Mech Appl 390(6):1150–1170CrossRef Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A Stat Mech Appl 390(6):1150–1170CrossRef
go back to reference Lü L, Zhou T (2011b) Link prediction in complex networks: a survey. Phys A 390(6):1150–1170CrossRef Lü L, Zhou T (2011b) Link prediction in complex networks: a survey. Phys A 390(6):1150–1170CrossRef
go back to reference Milo R (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542CrossRef Milo R (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542CrossRef
go back to reference Nassar H, Benson AR, Gleich DF (2019) Pairwise link prediction. ASONAM Nassar H, Benson AR, Gleich DF (2019) Pairwise link prediction. ASONAM
go back to reference Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102CrossRef Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102CrossRef
go back to reference Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab . Previous number = SIDL-WP-1999-0120 Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab . Previous number = SIDL-WP-1999-0120
go back to reference Panzarasa P, Opsahl T, Carley KM (2009) Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J Am Soc Inform Sci Technol 60(5):911–932CrossRef Panzarasa P, Opsahl T, Carley KM (2009) Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J Am Soc Inform Sci Technol 60(5):911–932CrossRef
go back to reference Rapoport A (1953) Spread of information through a population with socio-structural bias: I. assumption of transitivity. Bull Math Biophys 15(4):523–533MathSciNetCrossRef Rapoport A (1953) Spread of information through a population with socio-structural bias: I. assumption of transitivity. Bull Math Biophys 15(4):523–533MathSciNetCrossRef
go back to reference Schoenebeck G (2013) Potential networks, contagious communities, and understanding social network structure. In: Proceedings of the 22nd international conference on World Wide Web, WWW ’13, pp 1123–1132. Association for computing machinery, New York. https://doi.org/10.1145/2488388.2488486 Schoenebeck G (2013) Potential networks, contagious communities, and understanding social network structure. In: Proceedings of the 22nd international conference on World Wide Web, WWW ’13, pp 1123–1132. Association for computing machinery, New York. https://​doi.​org/​10.​1145/​2488388.​2488486
go back to reference Soundarajan S, Hopcroft J (2012) Using community information to improve the precision of link prediction methods. In: Proceedings of the 21st international conference on World Wide Web, pp 607–608 Soundarajan S, Hopcroft J (2012) Using community information to improve the precision of link prediction methods. In: Proceedings of the 21st international conference on World Wide Web, pp 607–608
go back to reference Wishart DS et al (2017) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082CrossRef Wishart DS et al (2017) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082CrossRef
Metadata
Title
Neighborhood and PageRank methods for pairwise link prediction
Authors
Huda Nassar
Austin R. Benson
David F. Gleich
Publication date
01-12-2020
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2020
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-00671-6

Premium Partner