Skip to main content
Top

2014 | OriginalPaper | Chapter

22. Neocortical Simulation for Epilepsy Surgery Guidance: Localization and Intervention

Authors : William W. Lytton, Samuels A. Neymotin, Jason C. Wester, Diego Contreras

Published in: Computational Surgery and Dual Training

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

New surgical and localization techniques allow for precise and personalized evaluation and treatment of intractable epilepsies. These techniques include the use of subdural and depth electrodes for localization, and the potential use for cell-targeted stimulation using optogenetics as part of treatment. Computer modeling of seizures, also individualized to the patient, will be important in order to make full use of the potential of these new techniques. This is because epilepsy is a complex dynamical disease involving multiple scales across both time and space. These complex dynamics make prediction extremely difficult. Cause and effect are not cleanly separable, as multiple embedded causal loops allow for many scales of unintended consequence. We demonstrate here a small model of sensory neocortex which can be used to look at the effects of microablations or microstimulation. We show that ablations in this network can either prevent spread or prevent occurrence of the seizure. In this example, focal electrical stimulation was not able to terminate a seizure but selective stimulation of inhibitory cells, a future possibility through use of optogenetics, was efficacious.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M (2004) Computational physiology and the physiome project. Exp Physiol 89:1–26CrossRef Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M (2004) Computational physiology and the physiome project. Exp Physiol 89:1–26CrossRef
2.
go back to reference Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson B (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Nat Acad Sci 104:1777–1782CrossRef Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson B (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Nat Acad Sci 104:1777–1782CrossRef
3.
go back to reference Dubitzky W (2006) Understanding the computational methodologies of systems biology. Brief Bioinform 7:315–317CrossRef Dubitzky W (2006) Understanding the computational methodologies of systems biology. Brief Bioinform 7:315–317CrossRef
4.
go back to reference Clusmann H, Kral T, Gleissner U, Sassen R, Urbach H, Blümcke I, Bogucki J, Schramm J (2004) Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery 54:847–859CrossRef Clusmann H, Kral T, Gleissner U, Sassen R, Urbach H, Blümcke I, Bogucki J, Schramm J (2004) Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery 54:847–859CrossRef
5.
go back to reference Wyler AR, Hermann BP, Somes G (1995) Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 37:982–990CrossRef Wyler AR, Hermann BP, Somes G (1995) Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 37:982–990CrossRef
6.
go back to reference Lesser RP, Crone NE, Webber WR (2010) Subdural electrodes. Clin Neurophysiol 121: 1376–1392CrossRef Lesser RP, Crone NE, Webber WR (2010) Subdural electrodes. Clin Neurophysiol 121: 1376–1392CrossRef
7.
go back to reference Lesser RP, Crone NE, Webber WR (2011) Using subdural electrodes to assess the safety of resections. Epilepsy Behav 20:223–229CrossRef Lesser RP, Crone NE, Webber WR (2011) Using subdural electrodes to assess the safety of resections. Epilepsy Behav 20:223–229CrossRef
8.
go back to reference Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT (2006) Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 22:992–998CrossRef Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT (2006) Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 22:992–998CrossRef
9.
go back to reference Morrell F, Whisler WW, Bleck TP (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231–239CrossRef Morrell F, Whisler WW, Bleck TP (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231–239CrossRef
10.
go back to reference Schramm J, Aliashkevich AF, Grunwald T (2002) Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg 97:39–47CrossRef Schramm J, Aliashkevich AF, Grunwald T (2002) Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg 97:39–47CrossRef
11.
go back to reference Wyler AR (1997) Recent advances in epilepsy surgery: temporal lobectomy and multiple subpial transections. Neurosurgery 41:1294–1301CrossRef Wyler AR (1997) Recent advances in epilepsy surgery: temporal lobectomy and multiple subpial transections. Neurosurgery 41:1294–1301CrossRef
12.
go back to reference Spencer SS, Schramm J, Wyler A, Connor M, Orbach D, Krauss G (2002) Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 43: 141–145CrossRef Spencer SS, Schramm J, Wyler A, Connor M, Orbach D, Krauss G (2002) Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 43: 141–145CrossRef
13.
go back to reference Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31S2:S1–S6 Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31S2:S1–S6
14.
go back to reference Cohen-Gadol AA, Stoffman MR, Spencer DD (2003) Emerging surgical and radiotherapeutic techniques for treating epilepsy. Curr Opin Neurol 16:213–219CrossRef Cohen-Gadol AA, Stoffman MR, Spencer DD (2003) Emerging surgical and radiotherapeutic techniques for treating epilepsy. Curr Opin Neurol 16:213–219CrossRef
15.
go back to reference Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR, Duckrow RB, Spencer DD, Bergey GK (2004) Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45:1560–1567CrossRef Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR, Duckrow RB, Spencer DD,  Bergey GK (2004) Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45:1560–1567CrossRef
16.
go back to reference Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, Cysyk B, Krauss G, Gordon B (1999) Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53:2073–2081CrossRef Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, Cysyk B, Krauss G, Gordon B (1999) Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53:2073–2081CrossRef
17.
go back to reference Osorio I, Frei MG, Manly BF, Sunderam S, Bhavaraju NC, Wilkinson SB (2001) An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. J Clin Neurophysiol 18:533–544CrossRef Osorio I, Frei MG, Manly BF, Sunderam S, Bhavaraju NC, Wilkinson SB (2001) An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. J Clin Neurophysiol 18:533–544CrossRef
18.
go back to reference Richardson KA, Schiff SJ, Gluckman BJ (2005) Control of traveling waves in the mammalian cortex. Phys Rev Lett 94:028103CrossRef Richardson KA, Schiff SJ, Gluckman BJ (2005) Control of traveling waves in the mammalian cortex. Phys Rev Lett 94:028103CrossRef
19.
go back to reference Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WR, Ortinski PI, Vicini S, Rogawski MA (2006) Elimination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200–210CrossRef Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WR, Ortinski PI, Vicini S, Rogawski MA (2006) Elimination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200–210CrossRef
20.
go back to reference Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Nat Acad Sci 106:12162–12167CrossRef Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Nat Acad Sci 106:12162–12167CrossRef
21.
go back to reference Milton JG (2010) Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 18:33–44CrossRef Milton JG (2010) Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 18:33–44CrossRef
22.
go back to reference Neymotin SA, Lee HY, Park EH, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers Comput Neurosci 5:19CrossRef Neymotin SA, Lee HY, Park EH, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers Comput Neurosci 5:19CrossRef
23.
go back to reference Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Nat Acad Sci 83:3513–3517CrossRef Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Nat Acad Sci 83:3513–3517CrossRef
24.
go back to reference Buonomano DV (2009) Harnessing chaos in recurrent neural networks. Neuron 63:423–425CrossRef Buonomano DV (2009) Harnessing chaos in recurrent neural networks. Neuron 63:423–425CrossRef
25.
go back to reference TY LYL, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992 TY LYL, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992
26.
go back to reference Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627CrossRef Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627CrossRef
27.
go back to reference Schulz R, Hoppe M, Boesebeck F, Gyimesi C, Pannek HW, Woermann FG, May T, Ebner A (2011) Analysis of reoperation in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosurgery 68:89–97CrossRef Schulz R, Hoppe M, Boesebeck F, Gyimesi C, Pannek HW, Woermann FG, May T, Ebner A (2011) Analysis of reoperation in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosurgery 68:89–97CrossRef
28.
go back to reference Yogarajah M, Focke NK, Bonelli SB, Thompson P, Vollmar C, McEvoy AW, Alexander DC, Symms MR, Koepp MJ, Duncan JS (2010) The structural plasticity of white matter networks following anterior temporal lobe resection. Brain 133:2348–2364CrossRef Yogarajah M, Focke NK, Bonelli SB, Thompson P, Vollmar C, McEvoy AW, Alexander DC, Symms MR, Koepp MJ, Duncan JS (2010) The structural plasticity of white matter networks following anterior temporal lobe resection. Brain 133:2348–2364CrossRef
29.
go back to reference Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, New YorkCrossRef Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, New YorkCrossRef
30.
go back to reference Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. The Neuroscientist 7:123–135CrossRef Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. The Neuroscientist 7:123–135CrossRef
31.
go back to reference Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Meth 171: 309–315CrossRef Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Meth 171: 309–315CrossRef
32.
go back to reference Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175–181CrossRef Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175–181CrossRef
33.
go back to reference Lytton WW, Stewart M (2005) A rule-based firing model for neural networks. Int J Bioelectromagnetism 7:47–50 Lytton WW, Stewart M (2005) A rule-based firing model for neural networks. Int J Bioelectromagnetism 7:47–50
34.
go back to reference Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69(10–12):1160–1164CrossRef Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69(10–12):1160–1164CrossRef
35.
go back to reference Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182 Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182
36.
go back to reference Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10(6):1830 Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10(6):1830
37.
go back to reference Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457(7233):1133–1136CrossRef Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457(7233):1133–1136CrossRef
38.
go back to reference Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20(4):826–836CrossRef Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20(4):826–836CrossRef
39.
go back to reference Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5(2):121–134CrossRef Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5(2):121–134CrossRef
40.
go back to reference Lytton WW, Hellman KM, Sutula TP (1996) Computer network model of mossy fiber sprouting in dentate gyrus. Epilepsia – AES Proc 37 S.5:117 Lytton WW, Hellman KM, Sutula TP (1996) Computer network model of mossy fiber sprouting in dentate gyrus. Epilepsia – AES Proc 37 S.5:117
41.
go back to reference Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81–98CrossRef Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81–98CrossRef
Metadata
Title
Neocortical Simulation for Epilepsy Surgery Guidance: Localization and Intervention
Authors
William W. Lytton
Samuels A. Neymotin
Jason C. Wester
Diego Contreras
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-8648-0_22