Skip to main content
Top
Published in: Journal of Computational Electronics 2/2016

02-01-2016

Nested dissection solver for transport in 3D nano-electronic devices

Authors: Y. Zhao, U. Hetmaniuk, S. R. Patil, J. Qi, M. P. Anantram

Published in: Journal of Computational Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hierarchical Schur complement method (HSC) and the HSC-extension have significantly accelerated the evaluation of the retarded Green’s function, particularly the lesser Green’s function, for two-dimensional nanoscale devices. In this work, the HSC-extension is applied to determine the solution of non-equilibrium Green’s functions on three-dimensional nanoscale devices. The operation count for the HSC-extension is analyzed for a cuboid device. When a cubic device is discretized with \(N \times N \times N\) grid points, the state-of-the-art recursive Green function (RGF) algorithm takes \(\mathscr {O}(N^7)\) operations, whereas the HSC-extension only requires \(\mathscr {O}(N^6)\) operations. Operation counts and runtimes are also studied for three-dimensional nanoscale devices of practical interest: a graphene-boron nitride-graphene multilayer system, a silicon nanowire, and a DNA molecule. The numerical experiments indicate that the cost for the HSC-extension is proportional to the solution of one linear system (or one LU-factorization) and that the runtime speed-ups over RGF exceed three orders of magnitude when simulating realistic devices, such as a graphene-boron nitride-graphene multilayer system with 40,000 atoms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The block on the diagonal of \(\mathbf {G}^{r}\) for the rightmost layer is the corresponding block in the matrix \(\mathbf {D}^{-1}\).
 
2
In practice, the binary tree is likely to be balanced.
 
3
Any cluster with 2-pairs is partitioned according to a degenerate tree, where each parent node has only one child.
 
Literature
1.
go back to reference Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: An elementary introduction. In: Electron Devices Meeting, 2002. IEDM’02. International (IEEE, 2002), pp. 703–706 Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: An elementary introduction. In: Electron Devices Meeting, 2002. IEDM’02. International (IEEE, 2002), pp. 703–706
2.
go back to reference Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices. 50(9), 1914 (2003)CrossRef Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices. 50(9), 1914 (2003)CrossRef
3.
go back to reference Barker, J.R., Pepin, J., Finch, M., Laughton, M.: Theory of non-linear transport in quantum waveguides. Solid State Electron. 32(12), 1155 (1989)CrossRef Barker, J.R., Pepin, J., Finch, M., Laughton, M.: Theory of non-linear transport in quantum waveguides. Solid State Electron. 32(12), 1155 (1989)CrossRef
4.
go back to reference Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two-and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4), 043713 (2006)CrossRef Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two-and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4), 043713 (2006)CrossRef
5.
go back to reference Asenov, A., Brown, A.R., Davies, J.H., Kaya, S., Slavcheva, G.: Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices. 50(9), 1837 (2003)CrossRef Asenov, A., Brown, A.R., Davies, J.H., Kaya, S., Slavcheva, G.: Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices. 50(9), 1837 (2003)CrossRef
6.
go back to reference Martinez, A., Kalna, K., Barker, J.R., Asenov, A.: A study of the interface roughness effect in Si nanowires using a full 3D NEGF approach. Physica E 37(1), 168 (2007)CrossRef Martinez, A., Kalna, K., Barker, J.R., Asenov, A.: A study of the interface roughness effect in Si nanowires using a full 3D NEGF approach. Physica E 37(1), 168 (2007)CrossRef
7.
go back to reference Martinez, A., Barker, J.R., Asenov, A., Bescond, M., Svizhenko, A., Anantram, A.: Development of a full 3D NEGF nano-CMOS simulator. In: Simulation of Semiconductor Processes and Devices, 2006 International Conference on (IEEE, 2006), pp. 353–356 Martinez, A., Barker, J.R., Asenov, A., Bescond, M., Svizhenko, A., Anantram, A.: Development of a full 3D NEGF nano-CMOS simulator. In: Simulation of Semiconductor Processes and Devices, 2006 International Conference on (IEEE, 2006), pp. 353–356
8.
go back to reference Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron. Devices. 54(9), 2213 (2007)CrossRef Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron. Devices. 54(9), 2213 (2007)CrossRef
9.
go back to reference Martinez, A., Brown, A.R., Asenov, A., Seoane, N.: A comparison between a fully-3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET. In: Simulation of Semiconductor Processes and Devices, 2009. SISPAD’09. International Conference on (IEEE, 2009), pp. 1–4 Martinez, A., Brown, A.R., Asenov, A., Seoane, N.: A comparison between a fully-3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET. In: Simulation of Semiconductor Processes and Devices, 2009. SISPAD’09. International Conference on (IEEE, 2009), pp. 1–4
10.
go back to reference Martinez, A., Seoane, N., Brown, A.R., Asenov, A.: A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs. In: Silicon Nanoelectronics Workshop (SNW), 2010 (IEEE, 2010), pp. 1–2 Martinez, A., Seoane, N., Brown, A.R., Asenov, A.: A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs. In: Silicon Nanoelectronics Workshop (SNW), 2010 (IEEE, 2010), pp. 1–2
11.
go back to reference Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511 (2008)CrossRef Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511 (2008)CrossRef
12.
go back to reference Svizhenko, A., Anantram, M., Govindam, T., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002)CrossRef Svizhenko, A., Anantram, M., Govindam, T., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002)CrossRef
13.
go back to reference Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 7(3), 755 (2009)MathSciNetCrossRefMATH Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 7(3), 755 (2009)MathSciNetCrossRefMATH
14.
go back to reference Lin, L., Yang, C., Meza, J., Lu, J., Ying, L., E, W.: SelInv - An algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 37, 40 (2011) Lin, L., Yang, C., Meza, J., Lu, J., Ying, L., E, W.: SelInv - An algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 37, 40 (2011)
15.
go back to reference Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408 (2008)MathSciNetCrossRefMATH Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408 (2008)MathSciNetCrossRefMATH
17.
go back to reference Hetmaniuk, U., Zhao, Y., Anantram, M.P.: A nested dissection approach to modeling transport in nanodevices: algorithms and applications. Int. J. Numer. Methods. Eng. 95(7), 587 (2013)MathSciNetCrossRef Hetmaniuk, U., Zhao, Y., Anantram, M.P.: A nested dissection approach to modeling transport in nanodevices: algorithms and applications. Int. J. Numer. Methods. Eng. 95(7), 587 (2013)MathSciNetCrossRef
18.
go back to reference Takahashi, K., Fagan, J., Chin, M.S.: Formation of a sparse bus impedance matrix and its application to short circuit study. In: Eighth PICA Conference (1973) Takahashi, K., Fagan, J., Chin, M.S.: Formation of a sparse bus impedance matrix and its application to short circuit study. In: Eighth PICA Conference (1973)
19.
21.
go back to reference Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359 (1998)MathSciNetCrossRefMATH Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359 (1998)MathSciNetCrossRefMATH
22.
go back to reference Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147 (2011)MathSciNetMATH Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147 (2011)MathSciNetMATH
23.
go back to reference The MathWorks Inc.: MATLAB Release 2011b. Natick, Massachusetts, United States (2011) The MathWorks Inc.: MATLAB Release 2011b. Natick, Massachusetts, United States (2011)
25.
go back to reference Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef
26.
go back to reference Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)CrossRef Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)CrossRef
27.
go back to reference Zhao, Y., Wan, Z., Xu, X., Patil, S.R., Hetmaniuk, U., Anantram, M.P.: Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis. Scientific reports 5, (2015) Zhao, Y., Wan, Z., Xu, X., Patil, S.R., Hetmaniuk, U., Anantram, M.P.: Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis. Scientific reports 5, (2015)
28.
go back to reference Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using Silicon nanowire building blocks. Science 291(5505), 851 (2001)CrossRef Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using Silicon nanowire building blocks. Science 291(5505), 851 (2001)CrossRef
29.
go back to reference Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(sp^3d^5s^*\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74(20), 205323 (2006)CrossRef Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(sp^3d^5s^*\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74(20), 205323 (2006)CrossRef
30.
go back to reference Göhler, B., Hamelbeck, V., Markus, T.Z., Kettner, M., Hanne, G.F., Vager, Z., Naaman, R., Zacharias, H.: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894 (2011)CrossRef Göhler, B., Hamelbeck, V., Markus, T.Z., Kettner, M., Hanne, G.F., Vager, Z., Naaman, R., Zacharias, H.: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894 (2011)CrossRef
31.
go back to reference Postma, H.W.C.: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420 (2010)CrossRef Postma, H.W.C.: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420 (2010)CrossRef
32.
go back to reference Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133(23), 9124 (2011)CrossRef Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133(23), 9124 (2011)CrossRef
33.
go back to reference Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT (2009) Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT (2009)
34.
go back to reference Qi, J., Edirisinghe, N., Rabbani, M.G., Anantram, M.P.: Unified model for conductance through DNA with the Landauer-Büttiker formalism. Phys. Rev. B 87(8), 085404 (2013)CrossRef Qi, J., Edirisinghe, N., Rabbani, M.G., Anantram, M.P.: Unified model for conductance through DNA with the Landauer-Büttiker formalism. Phys. Rev. B 87(8), 085404 (2013)CrossRef
Metadata
Title
Nested dissection solver for transport in 3D nano-electronic devices
Authors
Y. Zhao
U. Hetmaniuk
S. R. Patil
J. Qi
M. P. Anantram
Publication date
02-01-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0778-x

Other articles of this Issue 2/2016

Journal of Computational Electronics 2/2016 Go to the issue