Skip to main content
Top
Published in:

01-12-2016 | Original Article

Network topology and mean infection times

Authors: Ira S. Moskowitz, Paul Hyden, Stephen Russell

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A fundamental concept of social network analysis is centrality. Many analyses represent the network topology in terms of concept transmission/variation, e.g., influence, social structure, community or other aggregations. Even when the temporal nature of the network is considered, analysis is conducted at discrete points along a continuous temporal scale. Unfortunately, well-studied metrics of centrality do not take varying probabilities into account. The assumption that social and other networks that may be physically stationary, e.g., hard wired, are conceptually static in terms of information diffusion or conceptual aggregation (communities, etc.) can lead to incorrect conclusions. Our findings illustrate, both mathematically and experimentally, that if the notion of network topology is not stationary or fixed in terms of the concept, e.g., groups, belonging, community or other aggregations, centrality should be viewed probabilistically. We show through some surprising examples that study of transmission behavior based solely on a graph’s topological and degree properties is lacking when it comes to modeling network propagation or conceptual (vs. physical) structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the number of links sense, since in point set topology the network is either connected, or it is not. Of course, homological considerations can consider the extra link structures.
 
2
Please note though that even though the heuristic has its strengths and is, on the whole, a good model of virus spread, it also has its weaknesses (e.g., Lewis 2009).
 
3
We will use similar notation in the rest of the paper. If we do not specify a node it is understood it is \(n_{\mathrm{src}}\) that is under consideration.
 
Literature
go back to reference Aditya Prakash B (2012) Understanding and managing propagation on large networks—theory, algorithms, and models, Ph.D. thesis. Computer Science Department, Carnegie Mellon University Aditya Prakash B (2012) Understanding and managing propagation on large networks—theory, algorithms, and models, Ph.D. thesis. Computer Science Department, Carnegie Mellon University
go back to reference Aditya Prakash B, Chakrabarti D, Faloutsos M, Valler N, Faloutsos C (2011) Threshold conditions for arbitrary cascade models on arbitrary networks. In: Proceedings of the 2011 IEEE 11th international conference on data mining, ICDM ’11. IEEE Computer Society, pp 537–546 Aditya Prakash B, Chakrabarti D, Faloutsos M, Valler N, Faloutsos C (2011) Threshold conditions for arbitrary cascade models on arbitrary networks. In: Proceedings of the 2011 IEEE 11th international conference on data mining, ICDM ’11. IEEE Computer Society, pp 537–546
go back to reference Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social networks in information diffusion. In: Proceedings of the 21st international conference on World Wide Web. ACM, pp 519–528 Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social networks in information diffusion. In: Proceedings of the 21st international conference on World Wide Web. ACM, pp 519–528
go back to reference Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5):1170–1182CrossRef Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5):1170–1182CrossRef
go back to reference Burt RS (1982) Toward a structural theory of action: network models of stratification, perception and action. Academic Press, New YorkCrossRef Burt RS (1982) Toward a structural theory of action: network models of stratification, perception and action. Academic Press, New YorkCrossRef
go back to reference Chakrabarti D, Wang Y, Wang C, Leskovec J, Faloutsos C (2008) Epidemic thresholds in real networks. ACM Trans Inf Syst Secur 10(4):1:1–1:26CrossRef Chakrabarti D, Wang Y, Wang C, Leskovec J, Faloutsos C (2008) Epidemic thresholds in real networks. ACM Trans Inf Syst Secur 10(4):1:1–1:26CrossRef
go back to reference Correa CD, Crnovrsanin T, Ma K-L (2012) Visual reasoning about social networks using centrality sensitivity. IEEE Trans Vis Comput Graph 18(1):106–120CrossRef Correa CD, Crnovrsanin T, Ma K-L (2012) Visual reasoning about social networks using centrality sensitivity. IEEE Trans Vis Comput Graph 18(1):106–120CrossRef
go back to reference Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef
go back to reference Friedkin NE (1991) Theoretical foundations for centrality measures. Am J Sociol 96(6):1478–1504CrossRef Friedkin NE (1991) Theoretical foundations for centrality measures. Am J Sociol 96(6):1478–1504CrossRef
go back to reference Gould PR (1967) On the geographical interpretation of eigenvalues. Trans Inst Br Geogr 42:53–86CrossRef Gould PR (1967) On the geographical interpretation of eigenvalues. Trans Inst Br Geogr 42:53–86CrossRef
go back to reference Guille A, Hacid H, Favre C, Zighed DA (2013) Information diffusion in online social networks: a survey. ACM SIGMOD Rec 42(2):17–28CrossRef Guille A, Hacid H, Favre C, Zighed DA (2013) Information diffusion in online social networks: a survey. ACM SIGMOD Rec 42(2):17–28CrossRef
go back to reference Howard RA (1971) Dynamic probabilistic systems, vol 1: Markov models. [Reprint: Howard RA (2007) Dynamic probabilistic systems, vol 2: Semi-Markov and decision processes]. Dover, Mineola, NY Howard RA (1971) Dynamic probabilistic systems, vol 1: Markov models. [Reprint: Howard RA (2007) Dynamic probabilistic systems, vol 2: Semi-Markov and decision processes]. Dover, Mineola, NY
go back to reference Hyden P, Moskowitz IS, Russell S (2016) Using network topology to supplement high assurance systems. In: Proceedings of the HASE 2016. IEEE Press Hyden P, Moskowitz IS, Russell S (2016) Using network topology to supplement high assurance systems. In: Proceedings of the HASE 2016. IEEE Press
go back to reference Jamakovic A, Kooij RE, Van Mieghem P, van Dam ER (2006) Robustness of networks against viruses: the role of the spectral radius. In: Proceedings of the 2011 IEEE 11th international conference on data mining, symposium on communications and vehicular technology. IEEE, pp 35–38 Jamakovic A, Kooij RE, Van Mieghem P, van Dam ER (2006) Robustness of networks against viruses: the role of the spectral radius. In: Proceedings of the 2011 IEEE 11th international conference on data mining, symposium on communications and vehicular technology. IEEE, pp 35–38
go back to reference Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, New YorkMATH Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, New YorkMATH
go back to reference Li K, Tan Y, Zhang W, Wei W (2015) The research of e-mail virus spread based on complex network. Int J Comput Sci Math 6(2):188–200MathSciNetCrossRef Li K, Tan Y, Zhang W, Wei W (2015) The research of e-mail virus spread based on complex network. Int J Comput Sci Math 6(2):188–200MathSciNetCrossRef
go back to reference Louni A, Subbalakshmi KP (2014) Diffusion of information in social networks. In: Social networking. Springer, Berlin, pp 1–22 Louni A, Subbalakshmi KP (2014) Diffusion of information in social networks. In: Social networking. Springer, Berlin, pp 1–22
go back to reference Malinick TE, Tindall DB, Diani M (2013) Network centrality and social movement media coverage: a two-mode network analytic approach. Soc Netw 35(2):148–158CrossRef Malinick TE, Tindall DB, Diani M (2013) Network centrality and social movement media coverage: a two-mode network analytic approach. Soc Netw 35(2):148–158CrossRef
go back to reference McKendrick AG (1925) Applications of mathematics to medical problems. Proc Edinb Math Soci 44(6):1–34 McKendrick AG (1925) Applications of mathematics to medical problems. Proc Edinb Math Soci 44(6):1–34
go back to reference McRoberts B (2010, 9 June) Internet plays integral role in decision-making: study. China Daily, p. 16 McRoberts B (2010, 9 June) Internet plays integral role in decision-making: study. China Daily, p. 16
go back to reference Nowzari C, Preciado VM, Pappas GJ (2015) Analysis and control of epidemics: a survey of spreading processes on complex networks. arXiv preprint arXiv:1505.00768 Nowzari C, Preciado VM, Pappas GJ (2015) Analysis and control of epidemics: a survey of spreading processes on complex networks. arXiv preprint arXiv:​1505.​00768
go back to reference Ross S (1976) A first course in probability. Macmillan, New YorkMATH Ross S (1976) A first course in probability. Macmillan, New YorkMATH
go back to reference Saito K, Kimura M, Ohara K, Motoda H (2016) Super mediator—a new centrality measure of node importance for information diffusion over social network. Inf Sci 329:985–1000CrossRef Saito K, Kimura M, Ohara K, Motoda H (2016) Super mediator—a new centrality measure of node importance for information diffusion over social network. Inf Sci 329:985–1000CrossRef
go back to reference Scott J (2012) Social network analysis. Sage, Beverley Hills Scott J (2012) Social network analysis. Sage, Beverley Hills
go back to reference Serrano E, Iglesias CA, Garijo M (2015) A survey of Twitter rumor spreading simulations. In: Computational collective intelligence. Springer, Berlin, pp 113–122 Serrano E, Iglesias CA, Garijo M (2015) A survey of Twitter rumor spreading simulations. In: Computational collective intelligence. Springer, Berlin, pp 113–122
go back to reference Snell JL (1988) Introduction to probability. Random House, New YorkMATH Snell JL (1988) Introduction to probability. Random House, New YorkMATH
go back to reference Susarla A, Oh J-H, Tan Y (2012) Social networks and the diffusion of user-generated content: evidence from Youtube. Inf Syst Res 23(1):23–41CrossRef Susarla A, Oh J-H, Tan Y (2012) Social networks and the diffusion of user-generated content: evidence from Youtube. Inf Syst Res 23(1):23–41CrossRef
go back to reference Tang X, Quan Y, Miao Q, Hou R, Deng K (2015) Information propagation with retweet probability on online social network. In: Intelligent computation in big data era. Springer, Berlin, pp 326–333 Tang X, Quan Y, Miao Q, Hou R, Deng K (2015) Information propagation with retweet probability on online social network. In: Intelligent computation in big data era. Springer, Berlin, pp 326–333
go back to reference Van Mieghem P (2006) Performance analysis of communications networks and systems. Cambridge University Press, CambridgeCrossRefMATH Van Mieghem P (2006) Performance analysis of communications networks and systems. Cambridge University Press, CambridgeCrossRefMATH
go back to reference Van Mieghem P (2011a) Graph spectra for complex networks. Cambridge University Press, CambridgeMATH Van Mieghem P (2011a) Graph spectra for complex networks. Cambridge University Press, CambridgeMATH
go back to reference Van Mieghem P, Omic J, Kooij R (2009) Virus spread in networks. IEEE/ACM Trans Netw 17(1):1–14CrossRef Van Mieghem P, Omic J, Kooij R (2009) Virus spread in networks. IEEE/ACM Trans Netw 17(1):1–14CrossRef
go back to reference Wang Y, Chakrabarti D, Wang C, Faloutsos C (2003) Epidemic spreading in real networks: an eigenvalue viewpoint. In: SRDS, pp 25–34 Wang Y, Chakrabarti D, Wang C, Faloutsos C (2003) Epidemic spreading in real networks: an eigenvalue viewpoint. In: SRDS, pp 25–34
go back to reference Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge University Press, CambridgeCrossRefMATH Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge University Press, CambridgeCrossRefMATH
go back to reference Zang W, Zhang P, Zhou C, Guo L (2015) Locating multiple sources in social networks under the sir model: a divide-and-conquer approach. J Comput Sci 10:278–287MathSciNetCrossRef Zang W, Zhang P, Zhou C, Guo L (2015) Locating multiple sources in social networks under the sir model: a divide-and-conquer approach. J Comput Sci 10:278–287MathSciNetCrossRef
Metadata
Title
Network topology and mean infection times
Authors
Ira S. Moskowitz
Paul Hyden
Stephen Russell
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0338-9

Premium Partner