Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

22-07-2020 | Issue 8/2020

Wireless Networks 8/2020

Network traffic prediction based on INGARCH model

Journal:
Wireless Networks > Issue 8/2020
Author:
Meejoung Kim
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, we introduce the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) as a network traffic prediction model. As the INGARCH is known as a non-linear analytical model that could capture the characteristics of network traffic such as Poisson packet arrival and long-range dependence property, INGARCH seems to be an adequate model for network traffic prediction. Based on the investigation for the traffic arrival process in various network topologies including IoT and VANET, we could confirm that assuming the Poisson process as packet arrival works for some networks and environments of networks. The prediction model is generated by estimating parameters of the INGARCH process and predicting the Poisson parameters of future-steps ahead process using the conditional maximum likelihood estimation method and prediction procedure, respectively. Its performance is compared with those of three different models; autoregressive integrated moving average, GARCH, and long short-term memory recurrent neural network. Anonymized passive traffic traces provided by the Center for Applied Internet Data Analysis are used in the experiment. Numerical results show that the proposed model predicts better than the three models in terms of measurements used in prediction models. Based on the study, we can conclude the followings: INGARCH can capture the characteristics of network traffic better than other statistic models, it is more tractable than neural networks (NNs) overcoming the black-box nature of NNs, and the performances of some statistical models are comparable or even superior to those of NNs, especially when the data is insufficient to apply deep NNs.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Wireless Networks 8/2020 Go to the issue