Skip to main content
Top
Published in:

04-06-2022

Neural Mechanisms of the Maintenance and Manipulation of Gustatory Working Memory in Orbitofrontal Cortex

Authors: Layla Chadaporn Antaket, Yoshiki Kashimori

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Orbitofrontal cortex (OFC) is involved in flavor perception and executive functions of chemical sensations. It integrates multiple sensory modalities to perceive the flavor of foods, and organizes sensory information in selection of behavioral strategies. A recent study has reported that gustatory working memory (WM) is maintained in the OFC of rhesus monkeys. However, the maintenance mechanism remains unclear. Moreover, the manipulation mechanism, or how WM is utilized to guide behavior, also poorly understood. To address these issues, we are concerned with a delayed match-to-sample (DMS) task, and present a model for WM maintenance and manipulation in OFC. The model consists of the networks of gustatory cortex, OFC, and a decision layer. We show that gustatory WM is represented by a sparse activity of OFC neurons, elicited by short-term synaptic plasticity. The intermittent spiking in the sparse activity prevents from reducing the efficacy of short-term synaptic plasticity. The sparse activity codes WM in a functionally latent state, and retrieves WM in a functionally active state as it is needed. In contrast, top-down signals from OFC allows GC neurons to represent the gustatory information relevant to the WM maintained in OFC. We also present a comparison mechanism of a sample and a test stimulus, separated by a delay period. Furthermore, we offer the mechanism by which the synaptic structures of the neural circuits involved in the DMS task are generated via the task training. The results provide a unified view of how WM maintenance is linked to its manipulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994;14:5437–52.CrossRef Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994;14:5437–52.CrossRef
2.
go back to reference Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85:45–56.CrossRef Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85:45–56.CrossRef
3.
go back to reference Shimemura T, Fujita K, Kashimori K. A neural mechanism of taste perception modulated by odor information. Chem Senses. 2016;41:579–89. Shimemura T, Fujita K, Kashimori K. A neural mechanism of taste perception modulated by odor information. Chem Senses. 2016;41:579–89.
4.
go back to reference Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10:284–94.CrossRef Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10:284–94.CrossRef
5.
go back to reference Rolls ET, Grabenhorst F. The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol. 2008;86:216–44.CrossRef Rolls ET, Grabenhorst F. The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol. 2008;86:216–44.CrossRef
6.
go back to reference Jones B, Mishkin M. Limbic lesions and the problem of stimulus–reinforcement associations. Exp Neurol. 1972;36:362–77.CrossRef Jones B, Mishkin M. Limbic lesions and the problem of stimulus–reinforcement associations. Exp Neurol. 1972;36:362–77.CrossRef
7.
go back to reference Kolb B. Prefrontal cortex. In: Kolb B, Tees RC, editors. The cerebral cortex of the rat. Cambridge, MA: MIT Press; 1990. p. 437–58. Kolb B. Prefrontal cortex. In: Kolb B, Tees RC, editors. The cerebral cortex of the rat. Cambridge, MA: MIT Press; 1990. p. 437–58.
8.
go back to reference Rolls ET. The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351:1433–43.CrossRef Rolls ET. The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351:1433–43.CrossRef
9.
go back to reference Schoenbaum G, Setlow B, Saddoris MP, Gallagher M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron. 2003;39:855–67.CrossRef Schoenbaum G, Setlow B, Saddoris MP, Gallagher M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron. 2003;39:855–67.CrossRef
10.
go back to reference Schoenbaum G, Roesch M. Orbitofrontal cortex, associative learning, and expectancies. Neuron. 2005;47:633–6.CrossRef Schoenbaum G, Roesch M. Orbitofrontal cortex, associative learning, and expectancies. Neuron. 2005;47:633–6.CrossRef
11.
go back to reference Takei K, Fujita K, Kashimori Y. A neural mechanism of cue-outcome expectancy generated by the interaction between orbitofrontal cortex and amygdala. Chem Senses. 2020;45:15–26.CrossRef Takei K, Fujita K, Kashimori Y. A neural mechanism of cue-outcome expectancy generated by the interaction between orbitofrontal cortex and amygdala. Chem Senses. 2020;45:15–26.CrossRef
12.
go back to reference Wager TD, Smith EE. Neuroimaging studies of working memory. Cogn Affect Behav Neurosci. 2003;3:255–74.CrossRef Wager TD, Smith EE. Neuroimaging studies of working memory. Cogn Affect Behav Neurosci. 2003;3:255–74.CrossRef
13.
go back to reference Owen AM, McMillan KM, Laird AR, Bullmore E. Nback working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25:46–59.CrossRef Owen AM, McMillan KM, Laird AR, Bullmore E. Nback working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25:46–59.CrossRef
14.
go back to reference Barbey AK, Koenigs M, Grafman J. Orbitofrontal contributions to human working memory. Cereb Cortex. 2011;21:789–95.CrossRef Barbey AK, Koenigs M, Grafman J. Orbitofrontal contributions to human working memory. Cereb Cortex. 2011;21:789–95.CrossRef
15.
go back to reference Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49:1195–205.CrossRef Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49:1195–205.CrossRef
16.
go back to reference Meunier M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia. 1997;35:999–1015.CrossRef Meunier M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia. 1997;35:999–1015.CrossRef
17.
go back to reference Schon K, Tinaz S, Somers DC, Stern CE. Delayed match to object or place: an event-related fMRI study of short-term stimulus maintenance and the role of stimulus pre-exposure. Neuroimage. 2009;39:857–72.CrossRef Schon K, Tinaz S, Somers DC, Stern CE. Delayed match to object or place: an event-related fMRI study of short-term stimulus maintenance and the role of stimulus pre-exposure. Neuroimage. 2009;39:857–72.CrossRef
18.
go back to reference Romo R, Brody CD, Herna´ndez A, Lemus L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature. 1999;399:470–3.CrossRef Romo R, Brody CD, Herna´ndez A, Lemus L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature. 1999;399:470–3.CrossRef
19.
go back to reference Romanski LM, Goldman-Rakic PS. An auditory domain in primate prefrontal cortex. Nat Neurosci. 2002;5:15–6.CrossRef Romanski LM, Goldman-Rakic PS. An auditory domain in primate prefrontal cortex. Nat Neurosci. 2002;5:15–6.CrossRef
20.
go back to reference Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24:455–63.CrossRef Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24:455–63.CrossRef
21.
go back to reference Riley MR, Constantinidis C. Role of prefrontal persistent activity in working memory. Front Sys Neurosci. 2015;9:181. Riley MR, Constantinidis C. Role of prefrontal persistent activity in working memory. Front Sys Neurosci. 2015;9:181.
22.
go back to reference Constantinidis C, Funahashi S, Lee D, Murray JD, Qi XL, Wang M, Arnsten AFT. Persistent spiking activity underlies working memory. J Neurosci. 2018;38:7020–8.CrossRef Constantinidis C, Funahashi S, Lee D, Murray JD, Qi XL, Wang M, Arnsten AFT. Persistent spiking activity underlies working memory. J Neurosci. 2018;38:7020–8.CrossRef
23.
go back to reference Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.CrossRef Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.CrossRef
24.
go back to reference Stokes MG, Buschman TJ, Miller EK. Dynamic coding for flexible cognitive control. In: Egner T, editor. The Wiley Handbook of Cognitive Control. United Kingdom: John Wiley & Sons, Ltd; 2017. p. 221–41.CrossRef Stokes MG, Buschman TJ, Miller EK. Dynamic coding for flexible cognitive control. In: Egner T, editor. The Wiley Handbook of Cognitive Control. United Kingdom: John Wiley & Sons, Ltd; 2017. p. 221–41.CrossRef
26.
go back to reference Lara AH, Kennerley SW, Wallis JD. Encoding of gustatory working memory by orbitofrontal neurons. J Neurosci. 2009;29(3):765–74.CrossRef Lara AH, Kennerley SW, Wallis JD. Encoding of gustatory working memory by orbitofrontal neurons. J Neurosci. 2009;29(3):765–74.CrossRef
27.
go back to reference Baylis LL, Rolls ET, Baylis GC. Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neurosci. 1995;64(3):801–12.CrossRef Baylis LL, Rolls ET, Baylis GC. Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neurosci. 1995;64(3):801–12.CrossRef
30.
go back to reference Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge. Mass: Massachusetts Institute of Technology Press; 2001.MATH Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge. Mass: Massachusetts Institute of Technology Press; 2001.MATH
31.
go back to reference Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron. 2018;100:463–75.CrossRef Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron. 2018;100:463–75.CrossRef
32.
go back to reference Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA. 1998;95:5323–8.CrossRef Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA. 1998;95:5323–8.CrossRef
33.
go back to reference Engel TA, Wang X-J. Same or Different? A neural circuit mechanism of similarity-based pattern match decision making. J Neurosci. 2011;31(19):6982–96.CrossRef Engel TA, Wang X-J. Same or Different? A neural circuit mechanism of similarity-based pattern match decision making. J Neurosci. 2011;31(19):6982–96.CrossRef
34.
go back to reference Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci. 1996;16:5154–67.CrossRef Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci. 1996;16:5154–67.CrossRef
35.
go back to reference Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.CrossRef Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.CrossRef
36.
go back to reference Miller EK, Desimone R. Parallel neuronal mechanisms for short-term memory. Science. 1994;263:520–2.CrossRef Miller EK, Desimone R. Parallel neuronal mechanisms for short-term memory. Science. 1994;263:520–2.CrossRef
37.
go back to reference Rawley JB, Constantinidis C. Effects of task and coordinate frame of attention in area 7a of the primate posterior parietal cortex. J Vis. 2010;10:1–16. Rawley JB, Constantinidis C. Effects of task and coordinate frame of attention in area 7a of the primate posterior parietal cortex. J Vis. 2010;10:1–16.
38.
go back to reference Jones SR. When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms and meaning. Current Opin Neurobiol. 2016;40:72–80.CrossRef Jones SR. When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms and meaning. Current Opin Neurobiol. 2016;40:72–80.CrossRef
39.
go back to reference Sherman MA, Lee S, Law R, Haegens S, Thorn CA, Hämäläinen MS, Moore CI, Jones SR. Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice. Proc Natl Acad Sci USA. 2016;113(33):E4885–94.CrossRef Sherman MA, Lee S, Law R, Haegens S, Thorn CA, Hämäläinen MS, Moore CI, Jones SR. Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice. Proc Natl Acad Sci USA. 2016;113(33):E4885–94.CrossRef
41.
go back to reference D’Esposito M. From cognitive to neural models of working memory. Phil Trans R Soc B Biol Sci. 2007;362:761–72.CrossRef D’Esposito M. From cognitive to neural models of working memory. Phil Trans R Soc B Biol Sci. 2007;362:761–72.CrossRef
42.
go back to reference Pasternak T, Greenlee MW. Working memory in primate sensory systems. Nat Rev Neurosci. 2005;6:97–107.CrossRef Pasternak T, Greenlee MW. Working memory in primate sensory systems. Nat Rev Neurosci. 2005;6:97–107.CrossRef
43.
go back to reference Sreenivasan KK, Curtis CE, D’Esposito M. Revisiting the role of persistent neural activity during working memory. Trends Cog Sci. 2014;18(2):82–9.CrossRef Sreenivasan KK, Curtis CE, D’Esposito M. Revisiting the role of persistent neural activity during working memory. Trends Cog Sci. 2014;18(2):82–9.CrossRef
44.
go back to reference Lara AH, Wallis JD. The role of prefrontal cortex in working memory: a mini review. Front Sys Neurosci. 2015;9:173.CrossRef Lara AH, Wallis JD. The role of prefrontal cortex in working memory: a mini review. Front Sys Neurosci. 2015;9:173.CrossRef
45.
go back to reference Bettencourt KC, Xu Y. Decoding the content of visual short- term memory under distraction in occipital and parietal areas. Nat Neurosci. 2016;19:150–7.CrossRef Bettencourt KC, Xu Y. Decoding the content of visual short- term memory under distraction in occipital and parietal areas. Nat Neurosci. 2016;19:150–7.CrossRef
46.
go back to reference Lorenc ES, Sreenivasan KK, Nee DE, Vandenbroucke ARE, D’Esposito M. Flexible coding of visual working memory representations during distraction. J Neurosci. 2018;38:5267–76.CrossRef Lorenc ES, Sreenivasan KK, Nee DE, Vandenbroucke ARE, D’Esposito M. Flexible coding of visual working memory representations during distraction. J Neurosci. 2018;38:5267–76.CrossRef
47.
go back to reference Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb cortex. 2000;10:910–23.CrossRef Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb cortex. 2000;10:910–23.CrossRef
48.
go back to reference Sandberg A, Tegner J, Lansner A. A working memory model based on fast Hebbian learning. Network Comput Neural Syst. 2003;14:789–802.CrossRef Sandberg A, Tegner J, Lansner A. A working memory model based on fast Hebbian learning. Network Comput Neural Syst. 2003;14:789–802.CrossRef
49.
go back to reference Fiebig F, Lansner A. A spiking working memory model based on Hebbian short-term potentiation. J Neurosci. 2017;37(1):83–96.CrossRef Fiebig F, Lansner A. A spiking working memory model based on Hebbian short-term potentiation. J Neurosci. 2017;37(1):83–96.CrossRef
50.
go back to reference Masse NY, Yang GR, Song F, Wang X-J, Freedman DJ. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat Neurosci. 2019;22:1159–67.CrossRef Masse NY, Yang GR, Song F, Wang X-J, Freedman DJ. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat Neurosci. 2019;22:1159–67.CrossRef
51.
go back to reference Stokes MG, Muhle-Karbe PS, Myers NE. Theoretical distinction between functional states in working memory and their corresponding neural states. Vis Cog. 2020;28(5–8):420–32.CrossRef Stokes MG, Muhle-Karbe PS, Myers NE. Theoretical distinction between functional states in working memory and their corresponding neural states. Vis Cog. 2020;28(5–8):420–32.CrossRef
52.
go back to reference Muhle-Karbe PS, Myers NE, Stokes MG. A hierarchy of functional states in working memory. J Neurosci. 2021;41(20):4461–75.CrossRef Muhle-Karbe PS, Myers NE, Stokes MG. A hierarchy of functional states in working memory. J Neurosci. 2021;41(20):4461–75.CrossRef
53.
go back to reference Vincis R, Fontanini A. A gustocentric perspective to understanding primary sensory cortices. Curr Opin Neurobniol. 2016;40:118–24.CrossRef Vincis R, Fontanini A. A gustocentric perspective to understanding primary sensory cortices. Curr Opin Neurobniol. 2016;40:118–24.CrossRef
54.
go back to reference Camera GL, Fontanini A, Mazzucato L. Cortical computations via metastable activity. Curr Opin Neurobiol. 2019;58:37–45.CrossRef Camera GL, Fontanini A, Mazzucato L. Cortical computations via metastable activity. Curr Opin Neurobiol. 2019;58:37–45.CrossRef
55.
go back to reference Yamamoto T, Yuyama N, Kato T, Kawamura Y. Gustatory responses of cortical neurons in rats. II. Information processing of taste quality. J Neurophysiol. 1985;53(6):1356–69.CrossRef Yamamoto T, Yuyama N, Kato T, Kawamura Y. Gustatory responses of cortical neurons in rats. II. Information processing of taste quality. J Neurophysiol. 1985;53(6):1356–69.CrossRef
56.
go back to reference Fletcher ML, Ogg C, Lu L, Ogg RJ, Boughter JD Jr. Overlapping representation of primary tastes in a defined region of the gustatory cortex. J Neurosci. 2017;37(32):7595–605.CrossRef Fletcher ML, Ogg C, Lu L, Ogg RJ, Boughter JD Jr. Overlapping representation of primary tastes in a defined region of the gustatory cortex. J Neurosci. 2017;37(32):7595–605.CrossRef
57.
go back to reference Chen K, Kogan JF, Fontanini A. Spatially distributed representation of taste quality in the gustatory insular cortex of behaving mice. Curr Biol. 2021;31:247–56.CrossRef Chen K, Kogan JF, Fontanini A. Spatially distributed representation of taste quality in the gustatory insular cortex of behaving mice. Curr Biol. 2021;31:247–56.CrossRef
58.
go back to reference Zhu J, Cheng Q, Chen Y, Fan H, Han Z, Hou R, Chen Z, Li CT. Transient delay-period activity of Agranular Insular Cortex controls working memory maintenance in learning novel tasks. Neuron. 2020;105:934–46.CrossRef Zhu J, Cheng Q, Chen Y, Fan H, Han Z, Hou R, Chen Z, Li CT. Transient delay-period activity of Agranular Insular Cortex controls working memory maintenance in learning novel tasks. Neuron. 2020;105:934–46.CrossRef
59.
go back to reference D’Esposito M, Postle BR, Ballard D, Lease J. Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn. 1999;41:66–86.CrossRef D’Esposito M, Postle BR, Ballard D, Lease J. Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn. 1999;41:66–86.CrossRef
60.
go back to reference Owen AM, Herrod NJ, Menon DK, Clark JC, Downey SP, Carpenter TA, Minhas PS, Turkheimer FE, Williams EJ, Robbins TW, Sahakian BJ, Petrides M, Pickard JD. Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur J Neurosci. 1999;11:567–74.CrossRef Owen AM, Herrod NJ, Menon DK, Clark JC, Downey SP, Carpenter TA, Minhas PS, Turkheimer FE, Williams EJ, Robbins TW, Sahakian BJ, Petrides M, Pickard JD. Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur J Neurosci. 1999;11:567–74.CrossRef
61.
go back to reference Hoshi E, Tanji J. Area-selective neuronal activity in the dorsolateral prefrontal cortex for information retrieval and action planning. Neurophysiol. 2004;91:2707–22.CrossRef Hoshi E, Tanji J. Area-selective neuronal activity in the dorsolateral prefrontal cortex for information retrieval and action planning. Neurophysiol. 2004;91:2707–22.CrossRef
62.
go back to reference Tokuhara H, Fujita K, Kashimori Y. Neural mechanisms of maintenance and manipulation of information of temporal sequences in working memory. Cog Comput. 2021;2021(13):1085–98.CrossRef Tokuhara H, Fujita K, Kashimori Y. Neural mechanisms of maintenance and manipulation of information of temporal sequences in working memory. Cog Comput. 2021;2021(13):1085–98.CrossRef
63.
go back to reference Law C-T, Gold JI. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat Neurosci. 2009;12(5):655–63.CrossRef Law C-T, Gold JI. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat Neurosci. 2009;12(5):655–63.CrossRef
Metadata
Title
Neural Mechanisms of the Maintenance and Manipulation of Gustatory Working Memory in Orbitofrontal Cortex
Authors
Layla Chadaporn Antaket
Yoshiki Kashimori
Publication date
04-06-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10035-1

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner