Skip to main content
Top
Published in:

19-12-2022

Neural Modeling and Real-Time Environment Training of Human Binocular Stereo Visual Tracking

Authors: Jiaguo Wang, Xianghao Meng, Hanyuan Xu, Yang Pei

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Simulating the human natural visual system is beneficial for understanding brain intelligence and exploiting new aspects of computer vision. Previous studies have proposed many progressive models and experiments for visual tracking; however, only a few consider all factors involved in visual tracking. Improvements in cross-modal sensory fusion, online physical environment training, and leveraging machine learning are required. In this paper, we present a balanced visual tracking study between neuroscience models and deep-learning methods. In our visual tracking framework, we modify the original region proposal network and interconnect binocular R-CNNs with a new region of interest (RoI) model. Ground frame prediction can be implemented by localization fusion from binocular R-CNNs, as well as external sensory information, such as a dense disparity map. In the behavior stage, visual-motor transformation is implemented through the online training of saccades, pursuit, and vergence networks in the real environment. As demonstrated on a robot, our framework can learn tracking skills through online parameter updates using physical data collected from the robot. The framework achieves performance highly similar to human behaviors and better accuracy than recent models. Moreover, using prediction from our ground vision model to guide binocular, RoI pooling can improve the efficiency of object recognition and localization and reduce visual tracking errors by 27% compared with the original network. In conclusion, this study proposed an effective binocular tracking framework that draws inspiration from brain structures. The performance showed improved accuracy and robustness in tracking random moving targets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Escobar MJ, Masson GS, Vieville T, et al. Action recognition using a bio-inspired feedforward spiking network. Int J Comput Vis. 2009;82:284.CrossRef Escobar MJ, Masson GS, Vieville T, et al. Action recognition using a bio-inspired feedforward spiking network. Int J Comput Vis. 2009;82:284.CrossRef
2.
go back to reference Akbarinia A, Parraga CA. Feedback and surround modulated boundary detection. Int J Comput Vis. 2018;126:1367–80.CrossRef Akbarinia A, Parraga CA. Feedback and surround modulated boundary detection. Int J Comput Vis. 2018;126:1367–80.CrossRef
3.
go back to reference Tsotsos JK. Motion understanding: task-directed attention and representations that link perception with action. Int J Comput Vision. 2001;45:265–80.CrossRefMATH Tsotsos JK. Motion understanding: task-directed attention and representations that link perception with action. Int J Comput Vision. 2001;45:265–80.CrossRefMATH
4.
go back to reference Gupta S, Tolani V, Davidson J, et al. Cognitive mapping and planning for visual navigation. Int J Comput Vis. 2020;128:1311–30.CrossRef Gupta S, Tolani V, Davidson J, et al. Cognitive mapping and planning for visual navigation. Int J Comput Vis. 2020;128:1311–30.CrossRef
5.
go back to reference Porr B, Nürenberg B, Wörgötter F. A VLSI-compatible computer vision algorithm for stereoscopic depth analysis in real-time. Int J Comput Vision. 2002;49:39–55.CrossRefMATH Porr B, Nürenberg B, Wörgötter F. A VLSI-compatible computer vision algorithm for stereoscopic depth analysis in real-time. Int J Comput Vision. 2002;49:39–55.CrossRefMATH
6.
go back to reference Yuille AL, Liu C. Deep Nets: what have they ever done for vision? Int J Comput Vis. 2021;129:781–802.CrossRef Yuille AL, Liu C. Deep Nets: what have they ever done for vision? Int J Comput Vis. 2021;129:781–802.CrossRef
7.
go back to reference He K, Gkioxari G, Dollár P, et al. Mask R-CNN. Proc IEEE Int Conf Comput Vis. 2017;2961–2969. He K, Gkioxari G, Dollár P, et al. Mask R-CNN. Proc IEEE Int Conf Comput Vis. 2017;2961–2969.
8.
go back to reference Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 2015;28. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 2015;28.
9.
go back to reference Girshick R. Fast R-CNN. Proc IEEE Int Conf Comput Vis. 2015;1440–1448. Girshick R. Fast R-CNN. Proc IEEE Int Conf Comput Vis. 2015;1440–1448.
10.
go back to reference Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, ... Goldberg K. Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. 2017. arXiv preprint arXiv:1703.09312. Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, ... Goldberg K. Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. 2017. arXiv preprint arXiv:​1703.​09312.
11.
go back to reference Wang Z, Fey AM. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg. 2018;13(12):1959–70.CrossRef Wang Z, Fey AM. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg. 2018;13(12):1959–70.CrossRef
12.
go back to reference Mei C, Sibley G, Cummins M, et al. RSLAM: a system for large-scale mapping in constant-time using stereo. Int J Comput Vis. 2011;94:198–214.CrossRef Mei C, Sibley G, Cummins M, et al. RSLAM: a system for large-scale mapping in constant-time using stereo. Int J Comput Vis. 2011;94:198–214.CrossRef
13.
go back to reference Tai L, Paolo G, Liu M. Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. 2017 IEEE/RSJ Int Conf Intell Robots Syst (IROS). 2017;31–36. IEEE. Tai L, Paolo G, Liu M. Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. 2017 IEEE/RSJ Int Conf Intell Robots Syst (IROS). 2017;31–36. IEEE.
14.
go back to reference Hossain S, Lee DJ. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices. Sensors. 2019;19(15):3371.CrossRef Hossain S, Lee DJ. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices. Sensors. 2019;19(15):3371.CrossRef
15.
go back to reference Voigtlaender P, Luiten J, Torr PH, Leibe B. Siam R-CNN: visual tracking by re-detection. Proc IEEE/CVF Conf Comput Vis Pattern Recognit. 2020;6578–6588. Voigtlaender P, Luiten J, Torr PH, Leibe B. Siam R-CNN: visual tracking by re-detection. Proc IEEE/CVF Conf Comput Vis Pattern Recognit. 2020;6578–6588.
16.
go back to reference Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection. Proc IEEE Conf Comput Vis Pattern Recognit. 2016;779–788. Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection. Proc IEEE Conf Comput Vis Pattern Recognit. 2016;779–788.
17.
go back to reference Antonelli M, Gibaldi A, Beuth F, Duran AJ, Canessa A, Chessa M, Sabatini SP. A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. IEEE Trans Auton Ment Dev. 2014a;6(4):259–73.CrossRef Antonelli M, Gibaldi A, Beuth F, Duran AJ, Canessa A, Chessa M, Sabatini SP. A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. IEEE Trans Auton Ment Dev. 2014a;6(4):259–73.CrossRef
18.
go back to reference Vannucci L, Ambrosano A, Cauli N, Albanese U, Falotico E, Ulbrich S, ... Laschi C. A visual tracking model implemented on the iCub robot as a use case for a novel neurorobotic toolkit integrating brain and physics simulation. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). 2015;1179–1184. IEEE. Vannucci L, Ambrosano A, Cauli N, Albanese U, Falotico E, Ulbrich S, ... Laschi C. A visual tracking model implemented on the iCub robot as a use case for a novel neurorobotic toolkit integrating brain and physics simulation. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). 2015;1179–1184. IEEE.
19.
go back to reference Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WHC, Cohen L, Haxby JV. Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci. 2004;101(15):5658–63.CrossRef Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WHC, Cohen L, Haxby JV. Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci. 2004;101(15):5658–63.CrossRef
20.
go back to reference Yantis S, Schwarzbach J, Serences JT, et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci. 2002;5(10):995–1002.CrossRef Yantis S, Schwarzbach J, Serences JT, et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci. 2002;5(10):995–1002.CrossRef
21.
go back to reference Sakata H, Kusunoki M. Organization of space perception: neural representation of three-dimensional space in the posterior parietal cortex. Curr Opin Neurobiol. 1992;2(2):170–4.CrossRef Sakata H, Kusunoki M. Organization of space perception: neural representation of three-dimensional space in the posterior parietal cortex. Curr Opin Neurobiol. 1992;2(2):170–4.CrossRef
22.
go back to reference Peng J, Srikaew A, Wilkes M, Kawamura K, Peters A. An active vision system for mobile robots. In Smc 2000 conference proceedings. 2000 IEEE International Conference On Systems, Man and Cybernetics.’cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’. 2000;2:1472–1477. IEEE. Peng J, Srikaew A, Wilkes M, Kawamura K, Peters A. An active vision system for mobile robots. In Smc 2000 conference proceedings. 2000 IEEE International Conference On Systems, Man and Cybernetics.’cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’. 2000;2:1472–1477. IEEE.
23.
go back to reference Zhang X, Tay ALP. A physical system for binocular vision through saccade generation and vergence control. Cyber Sys: An Int J. 2009;40(6):549–68.CrossRefMATH Zhang X, Tay ALP. A physical system for binocular vision through saccade generation and vergence control. Cyber Sys: An Int J. 2009;40(6):549–68.CrossRefMATH
24.
go back to reference Antonelli M, et al. A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. IEEE Trans Auton Ment Dev. 2014b;6(4):259–73.CrossRef Antonelli M, et al. A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. IEEE Trans Auton Ment Dev. 2014b;6(4):259–73.CrossRef
25.
go back to reference Kyriakoulis N, Gasteratos A, Mouroutsos SG. An adaptive fuzzy system for the control of the vergence angle on a robotic head. J Intell Fuzzy Syst. 2010;21(6):385–94.CrossRefMATH Kyriakoulis N, Gasteratos A, Mouroutsos SG. An adaptive fuzzy system for the control of the vergence angle on a robotic head. J Intell Fuzzy Syst. 2010;21(6):385–94.CrossRefMATH
26.
go back to reference Zhang X, Tay LP. A spatial variant approach for vergence control in complex scenes. Image Vis Comput. 2011;29(1):64–77.CrossRef Zhang X, Tay LP. A spatial variant approach for vergence control in complex scenes. Image Vis Comput. 2011;29(1):64–77.CrossRef
27.
go back to reference Rea F, Sandini G, Metta G. Motor biases in visual attention for a humanoid robot. 2014 IEEE-RAS Int Conf Humanoid Robots. 2014;779–786. IEEE. Rea F, Sandini G, Metta G. Motor biases in visual attention for a humanoid robot. 2014 IEEE-RAS Int Conf Humanoid Robots. 2014;779–786. IEEE.
28.
go back to reference Rea F, Sandini G, Metta G. Motor biases in visual attention for a humanoid robot. 2014 IEEE-RAS Int Conf Humanoid Robots. 2014;779 –786. IEEE. Rea F, Sandini G, Metta G. Motor biases in visual attention for a humanoid robot. 2014 IEEE-RAS Int Conf Humanoid Robots. 2014;779 –786. IEEE.
29.
go back to reference Kowler E. Eye movements: The past 25 years. Vision Res. 2011;51(13):1457–83.CrossRef Kowler E. Eye movements: The past 25 years. Vision Res. 2011;51(13):1457–83.CrossRef
30.
go back to reference O’Driscoll GA, Wolff ALV, Benkelfat C, Florencio PS, Lal S, Evans AC. Functional neuroanatomy of smooth pursuit and predictive saccades. NeuroReport. 2000;11(6):1335–40.CrossRef O’Driscoll GA, Wolff ALV, Benkelfat C, Florencio PS, Lal S, Evans AC. Functional neuroanatomy of smooth pursuit and predictive saccades. NeuroReport. 2000;11(6):1335–40.CrossRef
31.
go back to reference Orban de Xivry JJ, Lefevre P. Saccades and pursuit: two outcomes of a single sensorimotor process. J Physiol. 2007;584(1):11–23.CrossRef Orban de Xivry JJ, Lefevre P. Saccades and pursuit: two outcomes of a single sensorimotor process. J Physiol. 2007;584(1):11–23.CrossRef
32.
go back to reference McPeek RM, Keller EL. Saccade target selection in the superior colliculus during a visual search task. J Neurophysiol. 2002;88(4):2019–34.CrossRef McPeek RM, Keller EL. Saccade target selection in the superior colliculus during a visual search task. J Neurophysiol. 2002;88(4):2019–34.CrossRef
33.
go back to reference Wang X, van de Weem J, Jonker P. An advanced active vision system imitating human eye movements. 2013 16th Int Conf Adv Robotics (ICAR). 2013;1–6. IEEE. Wang X, van de Weem J, Jonker P. An advanced active vision system imitating human eye movements. 2013 16th Int Conf Adv Robotics (ICAR). 2013;1–6. IEEE.
34.
go back to reference Falotico E, Zambrano D, Muscolo GG, Marazzato L, Dario P, Laschi C. Implementation of a bio-inspired visual tracking model on the iCub robot. In 19th International Symposium in Robot and Human Interactive Communication. 2010;564–569. IEEE. Falotico E, Zambrano D, Muscolo GG, Marazzato L, Dario P, Laschi C. Implementation of a bio-inspired visual tracking model on the iCub robot. In 19th International Symposium in Robot and Human Interactive Communication. 2010;564–569. IEEE.
35.
go back to reference Coombs D, Brown C. Real-time binocular smooth pursuit. Int J Comput Vis. 1993;11(2):147–64.CrossRef Coombs D, Brown C. Real-time binocular smooth pursuit. Int J Comput Vis. 1993;11(2):147–64.CrossRef
36.
go back to reference Das S, Ahuja N. Performance analysis of stereo, vergence, and focus as depth cues for active vision. IEEE Trans Pattern Anal Mach Intell. 1995;17(12):1213–9.CrossRef Das S, Ahuja N. Performance analysis of stereo, vergence, and focus as depth cues for active vision. IEEE Trans Pattern Anal Mach Intell. 1995;17(12):1213–9.CrossRef
37.
go back to reference Monaco JP, Bovik AC, Cormack LK. Active, foveated, uncalibrated stereovision. Int J Comput Vis. 2009;85(2):192–207.CrossRef Monaco JP, Bovik AC, Cormack LK. Active, foveated, uncalibrated stereovision. Int J Comput Vis. 2009;85(2):192–207.CrossRef
38.
go back to reference Mishra A, Aloimonos Y, Fah CL. Active segmentation with fixation. In 2009 IEEE 12th Int Conf Comput Vis. 2009;468–475. IEEE. Mishra A, Aloimonos Y, Fah CL. Active segmentation with fixation. In 2009 IEEE 12th Int Conf Comput Vis. 2009;468–475. IEEE.
39.
go back to reference Gibaldi A, Vanegas M, Canessa A, Sabatini SP. A portable bio-inspired architecture for efficient robotic vergence control. Int J Comput Vis. 2017;121(2):281–302.CrossRef Gibaldi A, Vanegas M, Canessa A, Sabatini SP. A portable bio-inspired architecture for efficient robotic vergence control. Int J Comput Vis. 2017;121(2):281–302.CrossRef
40.
go back to reference Zhang Z, Sattler T, Scaramuzza D. Reference pose generation for long-term visual localization via learned features and view synthesis. Int J Comput Vis. 2021;129(4):821–44.CrossRef Zhang Z, Sattler T, Scaramuzza D. Reference pose generation for long-term visual localization via learned features and view synthesis. Int J Comput Vis. 2021;129(4):821–44.CrossRef
41.
go back to reference Zhou H, Ummenhofer B, Brox T. DeepTAM: deep tracking and mapping with convolutional neural networks. Int J Comput Vis. 2020;128(3):756–69.CrossRef Zhou H, Ummenhofer B, Brox T. DeepTAM: deep tracking and mapping with convolutional neural networks. Int J Comput Vis. 2020;128(3):756–69.CrossRef
42.
go back to reference Chen H, Li Y, Deng Y, Lin G. CNN-based RGB-D salient object detection: learn, select, and fuse. Int J Comput Vis. 2021;129(7):2076–96.CrossRef Chen H, Li Y, Deng Y, Lin G. CNN-based RGB-D salient object detection: learn, select, and fuse. Int J Comput Vis. 2021;129(7):2076–96.CrossRef
43.
go back to reference Yoon JH, Lee CR, Yang MH, et al. Structural constraint data association for online multi-object tracking. Int J Comput Vis. 2019;127:1–21.CrossRef Yoon JH, Lee CR, Yang MH, et al. Structural constraint data association for online multi-object tracking. Int J Comput Vis. 2019;127:1–21.CrossRef
44.
go back to reference Zhong L, Zhang L. A robust monocular 3D object tracking method combining statistical and photometric constraints. Int J Comput Vis. 2019;127(8):973–92.CrossRefMATH Zhong L, Zhang L. A robust monocular 3D object tracking method combining statistical and photometric constraints. Int J Comput Vis. 2019;127(8):973–92.CrossRefMATH
45.
go back to reference Sturm J, Engelhard N, Endres F, Burgard W, Cremers D. A benchmark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RSJ Int Conf Intell Robots Syst. 2012;573–580. IEEE. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D. A benchmark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RSJ Int Conf Intell Robots Syst. 2012;573–580. IEEE.
46.
go back to reference Lemaire T, Berger C, Jung IK, Lacroix S. Vision-based slam: stereo and monocular approaches. Int J Comput Vis. 2007;74(3):343–64.CrossRef Lemaire T, Berger C, Jung IK, Lacroix S. Vision-based slam: stereo and monocular approaches. Int J Comput Vis. 2007;74(3):343–64.CrossRef
47.
go back to reference Agarwal S, Snavely N, Simon I, Seitz S, Szeliski R. Building Rome in a day. Proc ICCV. 2009;72–79. Agarwal S, Snavely N, Simon I, Seitz S, Szeliski R. Building Rome in a day. Proc ICCV. 2009;72–79.
48.
go back to reference Kuhn A, Hirschmüller H, Scharstein D, Mayer H. A TV prior for high-quality scalable multi-view stereo reconstruction. Int J Comput Vis. 2017;124(1):2–17.MathSciNetCrossRef Kuhn A, Hirschmüller H, Scharstein D, Mayer H. A TV prior for high-quality scalable multi-view stereo reconstruction. Int J Comput Vis. 2017;124(1):2–17.MathSciNetCrossRef
50.
go back to reference Liu A, Marschner S, Snavely N. Caliber: Camera localization and calibration using rigidity constraints. Int J Comput Vis. 2016;118(1):1–21.MathSciNetCrossRefMATH Liu A, Marschner S, Snavely N. Caliber: Camera localization and calibration using rigidity constraints. Int J Comput Vis. 2016;118(1):1–21.MathSciNetCrossRefMATH
51.
go back to reference Ma C, Chen L, Yong J. AU R-CNN: encoding expert prior knowledge into R-CNN for action unit detection. Neurocomputing. 2019;355:35–47.CrossRef Ma C, Chen L, Yong J. AU R-CNN: encoding expert prior knowledge into R-CNN for action unit detection. Neurocomputing. 2019;355:35–47.CrossRef
52.
go back to reference Zhu Q, Triesch J, Shi BE. Integration of vergence, cyclovergence, and saccades through active efficient coding. In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). 2020;1–6. IEEE. Zhu Q, Triesch J, Shi BE. Integration of vergence, cyclovergence, and saccades through active efficient coding. In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). 2020;1–6. IEEE.
53.
go back to reference de La Bourdonnaye F, Teuliere C, Chateau T, Triesch J. Learning of binocular fixations using anomaly detection with deep reinforcement learning. In 2017 Int Joint Conf Neural Netw (IJCNN). 2017;760–767. IEEE. de La Bourdonnaye F, Teuliere C, Chateau T, Triesch J. Learning of binocular fixations using anomaly detection with deep reinforcement learning. In 2017 Int Joint Conf Neural Netw (IJCNN). 2017;760–767. IEEE.
54.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv:1409.1556. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv:​1409.​1556.
55.
go back to reference Araújo AF, Antonino VO, Ponce-Guevara KL. Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw. 2020;130:253–68.CrossRef Araújo AF, Antonino VO, Ponce-Guevara KL. Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw. 2020;130:253–68.CrossRef
56.
go back to reference Du Y, Yuan C, Li B, Hu W, Yang H, Fu Z, Zhao L. Hierarchical nonlinear orthogonal adaptive-subspace self-organizing map based feature extraction for human action recognition. Proc AAAI Conf Artif Intell. 2008;32(1). Du Y, Yuan C, Li B, Hu W, Yang H, Fu Z, Zhao L. Hierarchical nonlinear orthogonal adaptive-subspace self-organizing map based feature extraction for human action recognition. Proc AAAI Conf Artif Intell. 2008;32(1).
57.
go back to reference Bernardino A, Santos-Victor J. Vergence control for robotic heads using log-polar images. In Proceedings of IEEE/RSJ Int Conf Intell Robots Syst. IROS’96. 1996;3:1264–1271. IEEE. Bernardino A, Santos-Victor J. Vergence control for robotic heads using log-polar images. In Proceedings of IEEE/RSJ Int Conf Intell Robots Syst. IROS’96. 1996;3:1264–1271. IEEE.
58.
go back to reference Hansen M, Sommer G. Active depth estimation with gaze and vergence control using Gabor filters. Proc 13th Int Conf Pattern Recognit. 1996;1:287–291. IEEE. Hansen M, Sommer G. Active depth estimation with gaze and vergence control using Gabor filters. Proc 13th Int Conf Pattern Recognit. 1996;1:287–291. IEEE.
59.
go back to reference Pereyra G, Tucker G, Chorowski J, Kaiser Ł, Hinton G. Regularizing neural networks by penalizing confident output distributions. 2017. arXiv preprint arXiv:1701.06548. Pereyra G, Tucker G, Chorowski J, Kaiser Ł, Hinton G. Regularizing neural networks by penalizing confident output distributions. 2017. arXiv preprint arXiv:​1701.​06548.
Metadata
Title
Neural Modeling and Real-Time Environment Training of Human Binocular Stereo Visual Tracking
Authors
Jiaguo Wang
Xianghao Meng
Hanyuan Xu
Yang Pei
Publication date
19-12-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10091-7

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner