Skip to main content
Top

2020 | OriginalPaper | Chapter

Neural Network Compression via Learnable Wavelet Transforms

Authors : Moritz Wolter, Shaohui Lin, Angela Yao

Published in: Artificial Neural Networks and Machine Learning – ICANN 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wavelets are well known for data compression, yet have rarely been applied to the compression of neural networks. This paper shows how the fast wavelet transform can be used to compress linear layers in neural networks. Linear layers still occupy a significant portion of the parameters in recurrent neural networks (RNNs). Through our method, we can learn both the wavelet bases and corresponding coefficients to efficiently represent the linear layers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks (Source code is available at https://​github.​com/​v0lta/​Wavelet-network-compression). Wavelet optimization adds basis flexibility, without large numbers of extra weights.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Courbariaux, M., Bengio, Y., David, J.-P.: BinaryConnect: training deep neural networks with binary weights during propagations. In: NIPS (2015) Courbariaux, M., Bengio, Y., David, J.-P.: BinaryConnect: training deep neural networks with binary weights during propagations. In: NIPS (2015)
3.
go back to reference Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. In 4th: International Conference on Learning Representations, ICLR 2016 (2016) Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. In 4th: International Conference on Learning Representations, ICLR 2016 (2016)
4.
go back to reference Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural networks. In: NIPS (2015) Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural networks. In: NIPS (2015)
5.
go back to reference Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI (2018) Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI (2018)
6.
go back to reference Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: NIPS (2014) Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: NIPS (2014)
7.
go back to reference Lin, S., Ji, R., Guo, X., Li, X.: Towards convolutional neural networks compression via global error reconstruction. In: IJCAI (2016) Lin, S., Ji, R., Guo, X., Li, X.: Towards convolutional neural networks compression via global error reconstruction. In: IJCAI (2016)
8.
go back to reference Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks. In: NIPS (2015) Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks. In: NIPS (2015)
9.
go back to reference Yang, Z., et al.: Deep fried convnets. In: ICCV (2015) Yang, Z., et al.: Deep fried convnets. In: ICCV (2015)
10.
go back to reference Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009) Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)
11.
go back to reference Le, Q., Sarlós, T., Smola, A.: Fastfood-approximating kernel expansions in loglinear time. In: ICML, vol. 85 (2013) Le, Q., Sarlós, T., Smola, A.: Fastfood-approximating kernel expansions in loglinear time. In: ICML, vol. 85 (2013)
12.
go back to reference Strang, G., Nguyen, T.: Wavelets and Filter Banks. SIAM, Philadelphia (1996) Strang, G., Nguyen, T.: Wavelets and Filter Banks. SIAM, Philadelphia (1996)
13.
go back to reference Cheng, Y., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.F.: An exploration of parameter redundancy in deep networks with circulant projections. In: ICCV (2015) Cheng, Y., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.F.: An exploration of parameter redundancy in deep networks with circulant projections. In: ICCV (2015)
15.
go back to reference Tjandra, A., Sakti, S., Nakamura, S.: Compressing recurrent neural network with tensor train. In: IJCNN. IEEE (2017) Tjandra, A., Sakti, S., Nakamura, S.: Compressing recurrent neural network with tensor train. In: IJCNN. IEEE (2017)
16.
go back to reference Yang, Y., Krompass, D., Tresp, V.: Tensor-train recurrent neural networks for video classification. In: ICML. JMLR. org (2017) Yang, Y., Krompass, D., Tresp, V.: Tensor-train recurrent neural networks for video classification. In: ICML. JMLR. org (2017)
17.
go back to reference Denil, M., Shakibi, B., Dinh, L., Ranzato, M.A., De Freitas, N.: Predicting parameters in deep learning. In: NIPS, pp. 2148–2156 (2013) Denil, M., Shakibi, B., Dinh, L., Ranzato, M.A., De Freitas, N.: Predicting parameters in deep learning. In: NIPS, pp. 2148–2156 (2013)
18.
go back to reference Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014) Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)
19.
go back to reference Wen, W., et al.: Learning intrinsic sparse structures within long short-term memory. In: International Conference on Learning Representations (2018) Wen, W., et al.: Learning intrinsic sparse structures within long short-term memory. In: International Conference on Learning Representations (2018)
20.
go back to reference Narang, S., Elsen, E., Diamos, G., Sengupta, S.: Exploring sparsity in recurrent neural networks. In: ICLR (2017) Narang, S., Elsen, E., Diamos, G., Sengupta, S.: Exploring sparsity in recurrent neural networks. In: ICLR (2017)
22.
go back to reference Wang, Z., Lin, J., Wang, Z.: Accelerating recurrent neural networks: a memory-efficient approach. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(10), 2763–2775 (2017) Wang, Z., Lin, J., Wang, Z.: Accelerating recurrent neural networks: a memory-efficient approach. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(10), 2763–2775 (2017)
23.
go back to reference Pan, Y., et al.: Compressing recurrent neural networks with tensor ring for action recognition. In: AAAI (2019) Pan, Y., et al.: Compressing recurrent neural networks with tensor ring for action recognition. In: AAAI (2019)
24.
go back to reference Ye, J., et al.: Learning compact recurrent neural networks with block-term tensor decomposition. In: CVPR (2018) Ye, J., et al.: Learning compact recurrent neural networks with block-term tensor decomposition. In: CVPR (2018)
25.
go back to reference Rustamov, R., Guibas, L.J.: Wavelets on graphs via deep learning. In: Advances in Neural Information Processing Systems (2013) Rustamov, R., Guibas, L.J.: Wavelets on graphs via deep learning. In: Advances in Neural Information Processing Systems (2013)
26.
go back to reference Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR 2014), CBLS, April 2014 (2014) Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR 2014), CBLS, April 2014 (2014)
27.
go back to reference Lan-lan Chen, Yu., Zhao, J.Z., Zou, J.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015)CrossRef Lan-lan Chen, Yu., Zhao, J.Z., Zou, J.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015)CrossRef
29.
go back to reference Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: ICML (2016) Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: ICML (2016)
30.
go back to reference LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998) LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
31.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
32.
go back to reference Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: The Penn Treebank (1993) Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: The Penn Treebank (1993)
33.
go back to reference Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271 (2018) Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:​1803.​01271 (2018)
Metadata
Title
Neural Network Compression via Learnable Wavelet Transforms
Authors
Moritz Wolter
Shaohui Lin
Angela Yao
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-61616-8_4

Premium Partner